PUBLICATIONS

INOVENSO DEVICES ENABLED HUNDREDS OF OUTSTANDING RESEARCHERS TO ADVANCE NANO(FIBER) SCIENCE

We thank our customers and their valuable works with Inovenso Electrospinning Devices. Below are some of the articles published by users of our equipment:

  1. 1
    PCL–PLA Blends for Electrospun Vascular Grafts With Enhanced Cellular Activity and Long-Term Biodegradability

    Janset Oztemur-Sezgin, Suzan Ozdemir, Havva Tezcan Unlu, Gulsah Cecener, Hande Sezgin, Ipek Yalcin – Enis 

    https://4spepublications.onlinelibrary.wiley.com/doi/abs/10.1002/pen.70109

     

  2. 2
    Thymol-based Schiff base-loaded poly (ε-caprolactone) (PCL) electrospun nanofiber mats with anticancer, antimicrobial and antioxidant properties

    Sunduz Alemdar, Nursel Pekel Bayramgil, Remziye Aysun Kepekci, Dicle Sahin, Sadeq K. Alhag & Senem Akkoc

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2025.2546700

  3. 3
    Electrospun ZnO/CoMoO4/ZnCo2O4 composite nanofibers for highly selective sub-ppm n-butanol sensing
  4. 4
    Tailoring Electrospun Eudragit L100 Fibers: Morphology, Core-Shell Architecture, and pH-Responsive Behavio
  5. 5
    The potential of resolvin D2 loaded hydroxyapatite/mineral trioxide aggregate electrospun membranes to downregulate Interleukin 1 beta and tumor necrosis factor alpha in human dental pulp stem cells and macrophages co-cultures

    Soumya Sheela, Fatma Mousa AlGhalban, Khalil Abdelrazek Khalil & Vellore Kannan Gopinath

    https://link.springer.com/article/10.1007/s00784-025-06426-x

  6. 6
    Physical and mechanical study of electrospun poly(Vinyl Alcohol)/dextrin fiber adhesive for wound care
  7. 7
    Defne Yaprağı Ekstraktının ve Defne Yağının Nanofiber Üretiminde Kullanım Olanağı
  8. 8
    Reusable Molten-nanonet fiber-immobilized air filter with polycaprolactone–polyvinylidene fluoride electrospun nanofibers for enhanced water-wash durability

    https://pubs.rsc.org/en/content/articlelanding/2025/ta/d5ta02341f/unauth

  9. 9
    Curing properties of covalently bonded polyoxazoline-imidazole thermal latent curing agents for one-component epoxy resins
  10. 10
    Fabrication of Composite Membrane via Electrospinning: A Novel Membrane Bioreactor Design for Enzymatic Synthesis of Prebiotic Carbohydrates

    Haci Ali GulecKadir CinarUfuk BagciPelin Onsekizoglu Bagci

    https://onlinelibrary.wiley.com/doi/abs/10.1111/jfpe.70168

  11. 11
    Physical and mechanical study of electrospun poly(Vinyl Alcohol)/dextrin fiber adhesive for wound care
  12. 12
    Arctium minus (Hill) Bernh. extract-loaded polycaprolactone and bilayer polycaprolactone/polyvinyl alcohol electrospun nanofiber scaffolds as bioactive wound dressings

    Tugba Eren Boncu, Cigdem Yuce, Selen Ilgun, Gokce Seker Karatoprak

    https://www.tandfonline.com/doi/full/10.1080/03639045.2025.2528062

  13. 13
    Physical and mechanical study of electrospun poly(Vinyl Alcohol)/dextrin fiber adhesive for wound care

    Gonzalez- Pérez-Giovanni,Gethzemani Mayeli Estrada-Villegas, Abril Fonseca-García,Omar Fabela-Sánchez, Erika Ruvalcaba, Carolina Caicedo

     

    https://www.sciencedirect.com/science/article/pii/S0167577X25010572

  14. 14
    The potential of resolvin D2 loaded hydroxyapatite/mineral trioxide aggregate electrospun membranes to downregulate Interleukin 1 beta and tumor necrosis factor alpha in human dental pulp stem cells and macrophages co-cultures

    Soumya Sheela, Fatma Mousa AlGhalban, Khalil Abdelrazek Khalil & Vellore Kannan Gopinath

    https://link.springer.com/article/10.1007/s00784-025-06426-x

  15. 15
    Amine-functionalized polyketone membrane: a low-cost adsorbent for highly selective adsorption of diclofenac sodium
  16. 16
    Development of Self-Healing Nanofiber-Reinforced Green Composites via Dual-Nozzle Coaxial Electrospinning for Enhanced Mechanical Performance and Damage Recovery

    Xusheng LiuPrabhakar M. N.Abuzar JamilDong-Woo LeeJung-II Song

    https://4spepublications.onlinelibrary.wiley.com/doi/abs/10.1002/pen.27287

  17. 17
    Removal and determination of Malachite Green dye using nanofiber membranes and UV-Vis spectrophotometer

    Ahmed Jaber Ibrahim, Juman A. Naser, Emad. S. Taiyha , Zahraa F. Hassanc , and Jeehan H. Mohammeda

    https://www.amecj.com/article_223228_b9a8ceb30e5849757d370cb23c8ce98c.pdf

  18. 18
    Fabrication of Electrospun Polycaprolactone Nanofibrous Mats Loaded with Purple Basil Extract (Ocimum basilicum L.) as Colorimetric pH Indicator Films

    Elif Erez, Ahmet Emin Eroğlu & Beste Bayramoğlu

    https://link.springer.com/article/10.1007/s11947-025-03903-9

  19. 19
    La0.7Sr0.3MnO3 catalyst decorated polyacrylonitrile nanofiber effects on electrospinning for carbon nanofiber formation
  20. 20
    Fabrication and Evaluation of PVA-NYS-THY Nanofiber Scaffolds as Antifungal Agents 2 Against Fluconazole-Resistant Candida glabrata
  21. 21
    Design and Characterization of Memantine and Donepezil Loaded 3D Scaffolds

    Betül Topçu ince, Samuel Guieu, Selin Seda Timur, Tuba Reçber, Emirhan Nemutlu, Maria Helena Vaz Fernandes & Hakan Eroglu

    https://www.tandfonline.com/doi/abs/10.1080/10837450.2025.2493256

  22. 22
    Development of PLA-based bilayer nanofibers containing ZIF (zeolitic imidazolate framework)-67 nanoparticles for active food packaging applications in citrus preservation
  23. 23
    Hollow electrospun mats from biobased-polybutylene succinate and thermoplastic polyurethane blends for dermal wound dressing

    Hatice Bilge Isgen, Sema Samatya Yilmaz & Ayse Aytac

    https://link.springer.com/article/10.1007/s00396-025-05420-9

  24. 24
    SYNTHESIS OF SILVER NANOPARTICLES IN THE SOLUTION OF HYDROXYPROPYLMETHYLCELLULOSE BASED ON NANOFIBER MAT

    Rogachev A.V. Jalilov J.Z Yunusov Kh.E, Ignatovich D.V, Navruzov F. M, Mirkholisov M.M

    https://myconference.uz/ru/thesis/632d8e1a-ec46-41aa-b343-a20a72279006

  25. 25
    PENGEMBANGAN KOMPOSIT BERPORI BERBASIS HIDROKSIAPATIT ALAMI MELALUI PROSES SINTERING DINGIN

    GUNAWAN

    https://repository.unsri.ac.id/169860/2/RAMA_21001_03013622328031_0024097806_0025127104_01_front_ref.pdf

  26. 26
    CYTOTOXICKÝ EFEKT GRAFENU ZÁVISLÝ NA DÁVCE A ČASU V POKUSECH IN VITRO A IN VIVO (PAEC BUŇKY, C57BL/6 MYŠI)

    https://karolinum.cz/data/book/31102/13%20Cytotoxicky%20efekt%20grafenu.pdf

  27. 27
    PSYLLİUM (Plantago ovata) MÜSİLAJI VE PROBİYOTİK İÇEREN YENİLEBİLİR FİLMLERİN GELİŞTİRİLMESİ VE ELMA DİLİMLERİNDE KULLANIMI

    DİLEK ASLAN KAYA

    http://acikerisim.harran.edu.tr:8080/jspui/bitstream/11513/4189/1/Dilek%20aslan%20kaya%20tez.pdf

  28. 28
    Flexible Bioelectronic Sensors: Bridging the Biomechanical Gap via Vapor Deposition of Conductive Polymers
  29. 29
    Electrospun Composites of Bioactive Glass/Pomegranate Seed Oil/Poly(ε-caprolactone) for Bone Tissue Engineering
  30. 30
    Synthesis and properties of carbon black (CB)-added polyacrylonitrile (PAN)/nickel foam (NF) flexible electrodes by electrospinning, and their supercapacitive performance

    M. Arslan Çarpan, S. R. Tokgöz, S. Düzyer Gebizli & A. Peksöz

    https://link.springer.com/article/10.1007/s10854-025-14403-z

  31. 31
    Molecularly Imprinted Nanoparticle-­ Embedded Electrospun Mat as an Antibacterial Wound Dressing

    Azize Çerçi, Oğuzhan Akgün, Esra Karaca, Çağla Bozkurt Güzel, Bilgen Osman

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/pat.70100

  32. 32
    Highly Selective Pyrene-Anchored Halloysite Nanotube for Fluorometric Determination of 2,4,6-Trinitrophenol in Environmental and Food Samples

    Vildan Sanko, İpek Ömeroğlu, Ahmet Şenocak, Süreyya Oğuz Tümay

    https://pubs.acs.org/doi/full/10.1021/acsomega.4c08857

  33. 33
    Synthesis and evaluation of chlorinated polypropylene-hematite fibrous matrices for enhanced photocatalytic oxidation of methylene blue

    Sitem Merve Şahin, Damla Çetin Altındal, Zeynep İlhan , Menemşe Gümüşderelioğlu

    https://www.sciencedirect.com/science/article/abs/pii/S1226086X25001236

  34. 34
    Synthesis and characterization of boron oxide nanofibers reinforced methacrylate composites and their flexural strength evaluations
  35. 35
    Leveraging microchannel cross-sectional geometry for acoustophoretic manipulation of submicron particles

    Thilhara Tennakoon, Tsz Wai Lai, Ka Chung Chan, Chun-Ho Liu, Randolph Chi Kin Leung, Christopher Yu Hang Chao, Sau Chung Fu

    https://www.sciencedirect.com/science/article/abs/pii/S0041624X25000071

  36. 36
    Nanofibrous Biomaterial Containing Raw-Propolis Particles Encapsulated by PLA/PBS for Wound Dressing Application

    Ecem Özdilek, Sema Samatya Yilmaz, Hüseyin Uzuner, and Ayse Aytac

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202400321

  37. 37
    PREPARATION AND CHARACTERIZATION OF NANOBIOMATERIALS FOR USE IN URETHRAL REPAIR
  38. 38
    Targeting MDA-MB-231 Cancer Stem Cells With Temsirolimus in 3D Collagen/PGA/Na2SiO3-Based Bone Model
  39. 39
    Ashwagandha: Optimizing the Extraction and Electrospun Nanofiber Production

    Maciej Jaskólski, Magdalena Paczkowska-Walendowska, Andrzej Miklaszewski, Judyta Cielecka-Piontek

    https://www.mdpi.com/1999-4923/17/1/61

  40. 40
    Lemon Juice-Infused PVA Nanofibers for the Development of Sustainable Antioxidant and Antibacterial Electrospun Hydrogel Biomaterials

    Anna Zakrzewska, Alicja Kosik-Kozioł, Seyed Shahrooz Zargarian, Michele Zanoni, Chiara Gualandi, Massimiliano Lanzi, Filippo Pierini

    https://pubs.acs.org/doi/abs/10.1021/acs.biomac.4c01466

  41. 41
    Enhanced bioactivity and biocorrosion resistance of porous CoCrMo implants with high-silica glass coatings

    Patrick Munyensanga, Meriame Bricha, Khalil El Mabrouk

    https://www.sciencedirect.com/science/article/abs/pii/S2352492824034603

  42. 42
    Investigation of Chitosan-Based Hydrogels and Polycaprolactone-Based Electrospun Fibers as Wound Dressing Materials Based on Mechanical, Physical, and Chemical Characterization

    Barkin Aydin , Nihat Arol , Nimet Burak, Aybala Usta and Muhammet Ceylan

    https://www.mdpi.com/2310-2861/11/1/39

  43. 43
    Impact of polymer selection and blending on the tensile properties of coaxially electrospun vascular grafts
  44. 44
    Smart Textiles and Emerging Technologies - Conference Proceedings 2024
  45. 45
    ELEKTRİKSEL İLETKENLİK VE YAĞ ABSORPSİYON UYGULAMALARI İÇİN SELÜLOZ ASETAT NANOLİFLERİN GELİŞTİRİLMESİ
  46. 46
    Evaluation of polysaccharide-based nanofibrous membranes as intra-abdominal adhesion barriers

    Serife Safak, Rabia Gozde Ozalp, Nesrin Ugras, Gulbahar Saat & Esra Karaca

    https://link.springer.com/article/10.1007/s13726-024-01440-4

  47. 47
    Hybrid supercapacitor battery-type electrode potential of electrospun PAN-porphyrin CNFs
  48. 48
    Fabrication and characterization of hydrophobic montmorillonite-modified PCL/COS nanofibrous electrospun membrane for hemostatic dressing

    Tin Anh Tran , Thong Lam Vu, Khoi Minh Le, My-An Tran Le , Kieu Thi-Thuy Nguyen, Thanh Binh , Vo Minh Quan , Phu Phong Vo  Tuan-Ngan Tang,

    Van Khiem Nguyen, Nhi Thao-Ngoc Dang, Han Thi Ngoc To, Chi Nhan Ha Thuc,  Toi Van, Thi-Hiep Nguyen & L, Hoan Ngoc Doan

    https://www.sciencedirect.com/science/article/abs/pii/S0927775724028395

  49. 49
    Differences in soil Cd immobilization and blockage of rice Cd uptake by biochar derived from crop residue and bone − A 2-year field experiment

    Zhongjun Xue , Fengfeng Sui Ca,  Yanjie Qi ab, siyu Pan, Ning Wang, Rongjun Bian, Stephen Joseph, Xuhui Zhang , Lianging Liab, Genxing Pan

    https://www.sciencedirect.com/science/article/pii/S0147651324016099

  50. 50
    Peppermint extract-compound nanofiber production and characterization
  51. 51
    Electrospinning of annatto-loaded cellulose acetate scaffolds using acetone/DMSO as solvent
  52. 52
    Fabrication of electrospun scaffolds with copper and zinc doped 58S bioactive glasses for bone tissue engineering applications

    Zeynep Atasayar, Aysen Akturk, Dilara Nur Dikmetas, Funda Karbancioglu-Guler, Melek Erol-Taygun & Sadriye Küçükbayrak

    https://link.springer.com/article/10.1557/s43580-024-01055-0

  53. 53
    Core-shell aerogel design for enhanced oral insulin delivery

    Gozde Ozesme Taylan, Carlos Illanes-Bordomás, Ozge Guven, Ece Erkan, Sevil Çıkrıkcı Erünsal, Mecit Halil Oztop, Carlos A. García-González

    https://www.sciencedirect.com/science/article/pii/S0378517324012729

  54. 54
    Static and dynamic cell culture of small caliber bilayer vascular grafts electrospun from polycaprolactone
     
     
  55. 55
    Light-induced rolling of azobenzene polymer thin films for wrapping subcellular neuronal structures

    Marta J. I. Airaghi Leccardi, Benoît X. E. Desbiolles, Anna Y. Haddad, Baju C. Joy, Chen Song & Deblina Sarkar

    https://www.nature.com/articles/s42004-024-01335-8

  56. 56
    Cent-Hydro: A Novel Temperature and Pressure-Controlled Hybrid System for Large-Scale Nanofiber Production
    Samia Farhaj,  Noman Ahmad, Alan M. Smith, Barbara R. Conway
     and Muhammad Usman Ghori
     
     
  57. 57
    Using gas-assisted electrospinning to design rod-shaped particles from starch for thickening agents and Pickering emulsifiers

    Jieying Li, Chris Klaassen, Peilong Li, Arkaye Kierulf, Leila Khazdooz, Mohammad Yaghoobi, Amin Zarei,

    James Smoot, Yong Lak Joo, Alireza Abbaspourrad
     
  58. 58
    Electrospun amygdalin and Inula helenium extract-loaded polylactic acid (PLA)/Polyvinylpyrrolidone (PVP) nanofibrous patches for colon cancer treatment: Fabrication, characterization and antitumour effect results

    Rabia Betul Sulutas, Sumeyye Cesur, Serap Ayaz Seyhan, Dilek Bilgic Alkaya, Ali Sahin, Nazmi Ekren, Oguzhan Gunduz

    https://www.sciencedirect.com/science/article/abs/pii/S1773224724006099

  59. 59
    Plasma treated-double layer electrospun fiber mats from thermoplastic polyurethane and gelatin for wound healing applications

    Arzu Yıldırım, Eray Sarper Erdogan , Seyma Caglayan, Rüya Keskinkaya, Yurdanur Turker, Funda Karbancıoglu-Güler , Dilara Nur Dikmetas¸Saime Batirel, Melek Erol Taygun, F. Seniha Guner

    https://www.sciencedirect.com/science/article/abs/pii/S1773224724006099

  60. 60
    Synthesis and characterization of graphene nanoplatelets-containing fibers by electrospinning
  61. 61
    Strategies for Improved pDNA Loading and Protection Using Cationic and Neutral LNPs with Industrial Scalability Potential Using Microfluidic Technology

    Ottonelli I , Adani E , Bighinati A , Cuoghi S , Tosi G, Vandelli MA, Ruozi B, Marigo V, Duskey JT

    https://www.dovepress.com/strategies-for-improved-pdna-loading-and-protection-using-cationic-and-peer-reviewed-fulltext-article-IJN

  62. 62
    Directed Assembly of Elastic Fibers via Coacervate Droplet Deposition on Electrospun Templates

    Kirklann Lau, Sean Reichheld, Mingqian Xian, Simon J. Sharpe*, Marta Cerruti*

    https://pubs.acs.org/doi/abs/10.1021/acs.biomac.4c00180

  63. 63
    Électrofilage: vers des structures filtrantes plus efficaces et plus écologiques
  64. 64
    Trabajo de Titulación Opción TI Titulación Integral por Tesis Proyecto: “Degradación de pesticidas con membranas de fibras de biopolímeros funcionalizados con 4-HidroxiTEMPO

    Yessica Jazmin Segura Montes. No. CONTROL: 19480671. CARRERA: Ingeniería Ambiental. ASESOR DE TESIS: CO-ASESOR DE TESIS: Dr. José Luis Hernández García. Dra. Gethzemani Mayeli Estrada Villegas.

    http://51.143.95.221/bitstream/TecNM/7763/1/TRABAJO%20YESSICA%20JAZMIN%20SEGURA%20MONTES%20TESIS%20I.A.%20abril%202024.pdf

     

     
  65. 65
    Functional Composite Separators with Cation-Trapping Abilities

    Jason Richard, Navid Solati, Arvinder Singh, Valentin Meunier, Yoko Toda, Alexis Grimaud, Arnaud Perez, Christel Laberty-Robert*

    https://pubs.acs.org/doi/abs/10.1021/acsaem.4c00094

     

     

     
  66. 66
    Preparation and Characterization of Amoxicillin-Loaded Polyvinyl Alcohol/Sodium Alginate Nanofibrous Mat: Drug Release Properties, Antibacterial Activity, and Cytotoxicity
     

    Azize Çerçi,  Elif Sena Demir, Esra Karaca, Çağla Bozkurt Güzel & Bilgen Osman

    https://link.springer.com/article/10.1007/s13369-024-09075-6

     

     

  67. 67
    Multifunctional Ceramic Filter Systems for Metal Melt Filtration Towards Zero-Defect Materials
  68. 68
    Carbon-Bonded Filter Materials and Filter Structures with Active and Reactive Functional Pores for Steel Melt Filtration
     

    Benjamin Bock-Seefeld, Patrick Gehre &  Christos G. Aneziris

    https://link.springer.com/chapter/10.1007/978-3-031-40930-1_1

     

  69. 69
    Monitoring Aerosols With Time Resolution With a Rotating Drum Sampler Using LA-ICPMS for Elemental Analysis
  70. 70
    Mapping the Influence of Solvent Composition over the Characteristics of Polylactic Acid Nanofibers Fabricated by Electrospinning
     

    PhD Hatice KarabulutDr. Semra UnalDr. Songul UlagProf. Anton FicaiProf. Denisa FicaiProf. Oguzhan Gunduz

     

  71. 71
    POLYMER-CLAY NANOFIBROUS WOUND DRESSING MATERIALS CONTAINING DIFFERENT BORON COMPOUND

    Sara Asghari Dilmani , Sena Koç , Tülay Selin Erkut , Menemşe Gümüşderelioğlu

    https://www.sciencedirect.com/science/article/abs/pii/S0946672X24000282

  72. 72
    A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair

     Simeon C. Daeschler1, Katelyn J.W. So, Konstantin Feinberg, Marina Manoraj, Jenny Cheung, Jennifer Zhang

    Kaveh Mirmoeini, J. Paul Santerre, Tessa Gordon1, Gregory H. Borschel 

    A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair

  73. 73
    Electrospun hesperidin nanofibers induce a cytoprotective effect on sodium-fluoride induced oxidative stress in vitro

    Mehmet Birer, Adnan Altuğ Kara, Begum Yurdakok-Dikmen, Recep Uyar, Gizem Aralan, Yağmur Turgut Birer, Ayhan Filazi, Füsun Acartürk

    https://www.sciencedirect.com/science/article/abs/pii/S177322472400056X

  74. 74
    Nickel and nickel oxide nanoparticle-embedded functional carbon nanofibers for lithium sulfur batteries.

    Rakhimbek, Baikalov, Konarov, Mentbayeva,Zhang, Bakenov

    https://europepmc.org/article/pmc/pmc10790965

  75. 75
    Black Carrot Extract Containing Polyvinyl Alcohol-Based Nanofibers: Structural Characterization and Determination of Total Oxidant-Antioxidant Capacity

    Turgay Çetinkaya, Mehmet Aydın Dağdeviren  & Sibel Bayıl Oğuzkan

    https://ijiaar.penpublishing.net/files/9/manuscript/manuscript_4306/ijiaar-4306-manuscript-222248.pdf

  76. 76
    Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers

    Suzan OzdemirJanset OztemurHande Sezgin and  Ipek Yalcin-Enis

    https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.3c01161

     

  77. 77
    Application of ZrO2-Based Hierarchical Nanofibers as a Promoter in Ni Catalyzed Methane Dry Re-Forming

    Manar Halabi, Omaier Naser-Eldeen Jin Wang, Leo Giloni Meirav Mann-Lahav Gideon S. Grader and Oz M. Gazit 

    https://pubs.acs.org/doi/epdf/10.1021/acsaem.3c01814

     

     

  78. 78
    Bacteria trapping effectivity on nanofibre membrane in liquids is exponentially dependent on the surface density

    Leontýna Varvařovská, Bruno Sopko, Radek Divín, Aleksei Pashschenko, Jan Fedačko, Jan Sabo, Alois Nečas, Evžen Amler, Taťána Jarošíková

    https://actavet.vfu.cz/media/pdf/actavet_2023092040435.pdf

  79. 79
    Fabrication and In Vitro Characterization of Polycaprolactone/Graphene Oxide/Collagen Nanofibers for Myocardial Repair

    Sema Seren Karapehlivan, Mehmet Necati Danisik, Zekiye Akdag, Elif Nur Yildiz, Oseweuba Valentine Okoro, Lei Nie, Amin Shavandi, Songul Ulag, Ali Sahin, Fatih Dumludag, and Oguzhan Gunduz

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202300189

  80. 80
    Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries

     I. Rakhimbek, N. Baikalov, A. Konarov, A. Mentbayeva, Y. Zhang, Z. Mansurov, M. Wakihara, Zh. Bakenov 

    https://shorturl.at/gpuvB

  81. 81
    Herbal active ingredient-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin nanofibrous membranes

    Cansu Ülker Turan, Mete Dervişcemaloğlu, Yüksel Güvenilir

    https://www.sciencedirect.com/science/article/abs/pii/S0939641123003107

  82. 82
    Desloratadine-Loaded Flexible Orally Dissolvable Tablets Made of Electrospun Fiber Mats

    Gülçin Arslan Azizoğlu, Buse Dönder, Nergis İnal, Erkan Azizoğlu

    https://www.researchsquare.com/article/rs-3539455/v1

  83. 83
    Production and characterization of polyamide-6 (PA6) and cellulose acetate (CA) based nanofiber membranes by electrospinning method

    Abdullah GUL Ismail TIYEK

    https://shorturl.at/fwyGY

  84. 84
    An overview of the electrospinning of polymeric nanofibers for biomedical applications related to drug delivery

    Rabia CeCe, Linning Jin, Monsur Islam, Jan G. Korvink, and Bharat Sharma

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202301297

  85. 85
    Fabrication of polycaprolactone-chitosan/curcumin polymer composite fibers and evaluation of their in vitro release kinetic behavior and antibacterial-antifungal activity

    Fatih Ciftci & Ali Can Özarslan

    https://link.springer.com/article/10.1007/s10971-023-06264-x

  86. 86
    Breathable waterproof fabrics
  87. 87
    Gelatin nanofibers with black elderberry, Au nanoparticles and SnO2 as intelligent packaging layer used for monitoring freshness of Hake fish

    Turgay Cetinkaya, Fatih Bildik, Filiz Altay, Zafer Ceylan

    https://www.sciencedirect.com/science/article/abs/pii/S0308814623024615

  88. 88
    Fabrication and Characterization of Hazelnut Shell Powders-loaded Poly (lactic acid) (PLA) Composite Fibers
  89. 89
    Improving the Solubility and Absorption of the Low- Solubility Compound Aripiprazole by Electrospinning Nanofiber Formulation

    Hideo Takeda, Akane Shirahama, Mayuko Tanaka, Nihon Validation Technologies Corporation

    https://www.validation.co.jp/wp/wp-content/uploads/2023/10/3096-005_PS23-PosterTemplate_No2_final.pdf

  90. 90
    Biodegradable Polycaprolactone Fibers with Silica Aerogel and Nanosilver Particles Produce a Coagulation Effect

    Büşra Şengel Ayvazoğlu, Muhammet Ceylan 2, Aybüke A. Isbir Turan and Elif Burcu Yılmaz

    https://shorturl.at/wIKLW

  91. 91
    Miniaturization of an enclosed electrospinning process to enhance reproducibility in the fabrication of rapidly dissolving cell-based biosensors

    Patrick MorkusStephanie SibbaldLauren ChoiSarah RassenbergCarlos D. M. FilipeDavid R. Latulippe

     

    https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.202300306

  92. 92
    Conductive electrospun polymer improves stem cell-derived cardiomyocyte function and maturation

    Gisselle Gonzalez, Aileena C. Nelson, Alyssa R. Holman, Alexander J. Whitehead, Erin LaMontagne, Rachel Lian, Ritwik Vatsyayan, Shadi A. Dayeh, Adam J. Engler

     

    https://www.sciencedirect.com/science/article/abs/pii/S014296122300371X

  93. 93
    Fucoidan-loaded electrospun Polyvinyl-alcohol/Chitosan nanofibers with enhanced antibacterial activity for skin tissue engineering

    Arnau Cuesta Puigmal, Musa Ayran, Songul Ulag, Eray Altan, Mehmet Mucahit Guncu, Burak Aksu, Barkan Kagan Durukan, Hilal Turkoglu Sasmazel, Roman A. Perez, Erhan Koc , Desmond O’Callaghan, Oguzhan Gunduz

    https://www.sciencedirect.com/science/article/abs/pii/S1751616123005167

  94. 94
    Fabrication of antimicrobial poly(3-hydroxybuthyrate)/poly(ε-caprolactone) nanofibrous mats loaded with curcumin/β-cylodextrin inclusion complex as potential wound dressing
  95. 95
    Electrospraying of phytosterols and their controlled release characteristics under in vitro digestive conditions
  96. 96
    Preparation and Characterization of Viburnum Opulus Containing Electrospun Membranes as Antibacterial Wound Dressing

    Adile Yuruk, Sevil Dincer Isoglu & Ismail Alper Isoglu

    https://link.springer.com/article/10.1007/s12221-023-00360-z

  97. 97
    Development of gallic acid-loaded ethylcellulose fibers as a potential wound dressing material

    Alexa-Maria Croitoru , Musa Ayran, Eray Altan, Yasin Karacelebi, Songul Ulag, Ali Sahin, Mehmet Mucahit Guncu, Burak Aksu, Oguzhan Gunduz, Bianca-Maria Tihăuan, Denisa Ficai, Anton Ficai

    https://www.sciencedirect.com/science/article/abs/pii/S014181302303893X

     
  98. 98
    Design and Synthesis of Novel Materials for Applications in Chemical Warfare Protection
    Biswas, Priyanka, University of Massachusetts Lowell ProQuest Dissertations Publishing,  2023. 30524564.

    https://www.proquest.com/openview/aea983609da116c6ff9ccf7891df7714/1?pq-origsite=gscholar&cbl=18750&diss=y

  99. 99
    High-performance SiO2 nanofiber membrane applied for high-temperature air filtration

    Laura Margarita Valencia-Osorio, Andrés Felipe Zapata-González, Jose David Ojeda-Galeano, Mônica Lopes Aguiar,
    Mónica Lucía Álvarez-Láinez

    https://www.sciencedirect.com/science/article/abs/pii/S138358662301938X

  100. 100
    Fabrication of nanoclay embedded adsorptive electrospun nanofiber membrane for removal of trace organic molecule

    Mustafa N. Taher, Derya Y. Koseoglu-Imer, Frank Lipnizki

    https://www.sciencedirect.com/science/article/abs/pii/S2352492823017658

  101. 101
    Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release

    Melis Ercelik, Cagla Tekin, Fatma Nur Parin, Busra Mutlu, Hazal Yilmaz Dogan, Gulcin Tezcan, Secil Ak Aksoy, Melisa Gurbuz, Kenan Yildirim, Ahmet Bekar, Hasan Kocaeli, Mevlut Ozgur Taskapilioglu, Pinar Eser, Berrin Tunca

    https://www.sciencedirect.com/science/article/abs/pii/S014181302303619X

  102. 102
    New plasma-assisted polymerization/activation route leading to a high density primary amine silanization of PCL/PLGA nanofibers for biomedical applications

    Sheida Aliakbarshirazi, Rouba Ghobeira, Tim Egghe, Nathalie De Geyter, Heidi Declercq, Rino Morent

    https://www.sciencedirect.com/science/article/abs/pii/S0169433223020603

  103. 103
    Copolymers and terpolymers of vinyl phosphonic acid, acrylonitrile, methyl acrylate, and vinyl acetate. Thermal oxidative stabilization and their nanofiber

    Elif Keskin, Nesrin Köken, Nilgün Kızılcan, Ahmet Akar

     

    https://www.tandfonline.com/doi/abs/10.1080/25740881.2023.2250863

  104. 104
    Reversible Thermochromic Polycaprolactone Nanofibers for Repetitive Usage

    Sebnem Duzyer Gebizli, Nihal Guclu, Mehmet Tiritoglu, Serkan Tezel & Mehmet Orhan

    https://link.springer.com/article/10.1007/s12221-023-00323-4

  105. 105
    A novel biosensor based on molecularly imprinted polymer coated nanofiber composite for uric acid analysis in body fluids

    Hamid Hashemi-Moghaddam, Ozgur Ozalp , Mustafa Soylak

    https://www.sciencedirect.com/science/article/abs/pii/S2352492823015866

  106. 106
    Fabrication and characterization of biobased electrospun pH indicators from black carrot anthocyanin-loaded polylactide
  107. 107
    Electrospun nanofibers doped with PVDF and PLZT nanoparticles for potential biomedical and energy harvesting applications

    Ashok Batra, James Sampson, Angela Davis, James Currie & Ashok Vaseashta

     

    https://link.springer.com/article/10.1007/s10854-023-11066-6

  108. 108
    Three-Dimensional Piezoelectric–Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting

     

     

  109. 109
    Design and development of textile-based strain sensors via screen printing

    Tugce Caliskan, Aleyna Arslan, Berkay Kostekci, M.Alperen Kumru, Merve Acer Kalafat, Ikilem Gocek

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214785323041858

  110. 110
    Effect of Pre-Oxidation of Electrospun Polyvinylpyrrolidone-Derived CoxP/C Composite Nanofibers on their Electrochemical Performance as Anode in Lithium-Ion Batteries

     S. Berikbaikyzy1, Y. Sagynbay, G. Turarova, I. Taniguchi, Zh. Bakenov,  A. Belgibayeva 

    https://shorturl.at/hpWY3

  111. 111
    Superior Thermoelectric Performance of Textured Ca3Co4−xO9+???? Ceramic Nanoribbons

    Itzhak I. Maor, Katharina Kruppa, Adi Rozencweig, Amir Sterzer, Frank Steinbach, Vadim Beilin, Bernd Breidenstein, Gennady E. Shter, Meirav Mann-Lahav, Armin Feldhoff  and Gideon S. Grader

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202304464

  112. 112
    Synthesis of Free-Standing Tin Phosphide/Phosphate Carbon Composite Nanofibers as Anodes for Lithium-Ion Batteries with Improved Low-Temperature Performance

    Ayaulym Belgibayeva,  Makpal Rakhatkyzy, Aiym Rakhmetova, Gulnur Kalimuldina, Arailym Nurpeissova, and Zhumabay Bakenov

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202304062

  113. 113
    Preparation of Bacillus pumilus loaded electrosprayed nanoparticles as a plant protective against postharvest fungal decay

    Meyrem Vehapi, Benan İnan, Selma Kayacan-Cakmakoglu, Osman Sagdic & Didem Balkanlı Özçimen

    https://link.springer.com/article/10.1007/s10658-023-02738-4

  114. 114
    Design of Cinnamaldehyde- and Gentamicin-Loaded Double-Layer Corneal Nanofiber Patches with Antibiofilm and Antimicrobial Effects

    Sumeyye Cesur, Elif Ilhan, Tufan Arslan Tut, Elif Kaya, Basak Dalbayrak, Gulgun Bosgelmez-Tinaz, Elif Damla Arısan, Oguzhan Gunduz

    and Ewa Kijeńska-Gawrońska

    https://pubs.acs.org/doi/full/10.1021/acsomega.3c00914

  115. 115
    Electrospun nanofiber scaffolds for soft and hard tissue regeneration

     Wang Xinyi, Xie Xianrui, Chen Yujie, Wang Xiaoyu, Xu Xiaoqing, Shen Yihong, Mo Xiumei 

    https://shorturl.at/dfxBO

  116. 116
    Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering
     

    https://www.mdpi.com/2306-5354/10/7/854

  117. 117
    Production and characterization of polyamide-6 (PA6) and cellulose acetate (CA) based nanofiber membranes by electrospinning method

    Abdullah GUL, İsmail TIYEK

     

    https://shorturl.at/dhv05

  118. 118
    FABRICATION AND CHARACTERIZATION OF ELECTROSPUN POLYLACTIC ACID FILMS REINFORCED WITH CHILEAN BAMBOO CELLULOSE NANOFIBERS

     ALEXANDER GAITÁN and WILLIAM GACITÚA 

     

    https://shorturl.at/cvLT6

  119. 119
    Electrospun composite nanofibers for treating infectious esophagitis

    Muge Koyun, Rabia Betul Sulutas, Yigit Turan, Hatice Karabulut, Armaghan Moradi, Huseyin Berkay Ozarici, Songul Ulag,

    Ali Sahin, Mehmet Mucait Guncu & Oguzhan Gunduz

     

    https://link.springer.com/article/10.1007/s42247-023-00533-9

  120. 120
    Incorporating antioxidative peptides within nanofibrous delivery vehicles: Characterization and in vitro release kinetics

     Zahide Kirbas, Filiz Altay 

    Food Bioscience

  121. 121
    Incorporation of Encapsulated Yoghurt Bacteria into Stirred Yoghurt to Improve their Survival in an In Vitro Digestive Conditions

    Çiğdem Hökelekli,Firuze Ergin & Ahmet Kucukcetin

    https://link.springer.com/article/10.1007/s11947-023-03161-7

  122. 122
    Fabrication and characterization of chlorhexidine gluconate loaded poly(vinyl alcohol)/45S5 nano-bioactive glass nanofibrous membrane for guided tissue regeneration applications

    Ceren Keçeciler-EmirYeliz Başaran-ElalmişYeşim Müge ŞahinErdi BuluşSevil Yücel

    https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.23562

  123. 123
    Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine

    Jun Shen, Weihao Yuan, Maryam Badv*Alireza Moshaverinia*, and Paul S. Weiss*

    https://pubs.acs.org/doi/full/10.1021/acsmaterialsau.3c00027

  124. 124
    Preparation and comparison of electrospun PEO/PTFE and PVA/PTFE nanofiber membranes for syringe filters
  125. 125
    Scaffolds with high oxygen content support osteogenic cell survival under hypoxia
  126. 126
    Hypericum perforatum Oil and Vitamin A Palmitate-Loaded Gelatin Nanofibers Cross-Linked by Tannic Acid as Wound Dressings

    Aysen Akturk, Funda Nur Kasikci, Dilara Nur Dikmetas, Funda Karbancioglu-Guler and Melek Erol-Taygun

     

    https://pubs.acs.org/doi/full/10.1021/acsomega.3c02967

  127. 127
    Synthesis and characterization of graphene nanoplatelets-containing fibers by electrospinning

    Enrico Storti, Michal Lojka , Simona Lencová, J ana Hubálková, Ondřej Jankovský , Christos G. Aneziris

    https://www.sciencedirect.com/science/article/pii/S2666539523000676

  128. 128
    Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Deposition

    Adrivit Mukherjee, Afshin Dianatdar, Magdalena Z. Gładysz, Hamoon Hemmatpour, Mart Hendriksen, Petra Rudolf, Małgorzata K. Włodarczyk-Biegun, Marleen Kamperman, Ajay Giri Prakash Kottapalli and Ranjita K. Bose.

     

    https://pubs.acs.org/doi/full/10.1021/acsami.3c06015

  129. 129
    Extracted Silk Fibroin-Cellulose Acetate Nanofibrous Scaffolds for Tissue Engineering Applications

    Akash NundlollNowsheen GoonooArchana Bhaw-Luximon

     

    https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.202200186

  130. 130
    Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates

    Gabriela Hinojosa-Ventura, Mario Alberto García-Ramírez, José Manuel Acosta-Cuevas,

    Orfil González-Reynoso

     

    https://www.mdpi.com/2072-666X/14/7/1279

  131. 131
    01D52Design of Core-Shell Polylactic Acid (PLA) electrospun nanofibers as potential healing carriers

    Mohamad Tarmizie Hassim, M.N. Prabhakar, Jung-il Song

     

    https://www.sciencedirect.com/science/article/abs/pii/S1359835X23002373

  132. 132
    Developing a pressure sensing sensorized sock based on piezoelectric pressure sensors, for performing gait analysis
  133. 133
    The production of highly efficient visible-light-driven electrospun α-Fe2O3 photocatalyst through modifying iron source material for wastewater treatment applications
  134. 134
    Improving the interfacial performance and the adsorption inhibition of an extended-surfactant mixture for enhanced oil recovery using different hydrophobicity nanoparticles

    Christian A. Paternina, Henderson Quintero, Ronald Mercado

     

    https://www.sciencedirect.com/science/article/pii/S001623612301373X

  135. 135
    Development of polycaprolactone-based electrospun pH-sensitive sensors as instant colorimetric indicators for food packaging

    Nihal GucluSebnem Duzyer GebizliMehmet Orhan

     

    https://onlinelibrary.wiley.com/doi/abs/10.1111/cote.12701

  136. 136
    ORAL PRESENTATION-FULL PAPER ANTIFUNGAL ACTIVITY OF CRUDE EXTRACTS OF GUAVA (PSIDIUM GUAJAVA) LEAVES AND BARK AGAINST FUSARIUM …
  137. 137
    Understanding the Influence of Li7La3Zr2O12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes

    Michael J. CounihanDevon J. PowersPallab BaraiShiyu HuTeodora ZagoracYundong ZhouJungkuk LeeJustin G. ConnellKanchan S. ChavanIan S. GilmoreLuke HanleyVenkat Srinivasan

    Yuepeng Zhang, and  Sanja Tepavcevic

     

    https://pubs.acs.org/doi/abs/10.1021/acsami.3c04262

  138. 138
    Electrospinning in personal protective equipment for healthcare work

    Ariane Regina Souza Rossin, Lucas Spessato, Fabiana da Silva Lima Cardoso, Josiane Caetano, Wilker Caetano,

    Eduardo Radovanovic & Douglas Cardoso Dragunski

     

    https://link.springer.com/article/10.1007/s00289-023-04814-5

  139. 139
    ORIENTED FIBROUS POLY (BUTYLENE ADIPATE-co-TEREPHTHALATE) MATRICES WITH NANOTOPOGRAPHIC FEATURES: PRODUCTION AND CHARACTERIZATION
  140. 140
    Particle Technology and Textiles
  141. 141
    3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays
     
  142. 142
    Fabrication of mixed matrix nanofibers with electrospraying and electrospinning techniques and their application to gas toluene removal

    Elifnur Gezmis-Yavuz, C. Elif Cansoy, Derya Y. Koseoglu-Imer

    https://www.sciencedirect.com/science/article/abs/pii/S2213343723008060

     

  143. 143
    Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up
  144. 144
    Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline

    Amirpasha Moetazediana,b*, Alessia Candeoc, Siyun Liua, Arran Hughesd, Vahid Nasrollahid, Mozafar Saadatd, Andrea Bassic, Liam M. Grovere, Liam R. Coxf, Gowsihan Poologasundarampillaia**

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.202300636

     

  145. 145
    THE EFFECT OF POLYMER TYPE AND FIBER ORIENTATION ON THE COMPLIANCE PROPERTIES OF ELECTROSPUN VASCULAR GRAFTS

    OZDEMIR SUZAN*, OZTEMUR JANSET, SEZGIN HANDE AND YALCIN-ENIS IPEK

    Istanbul Technical University, Textile Engineering Department, Istanbul, Turkey

    https://dspace.tul.cz/bitstream/handle/15240/167240/VaT_2023_1_11.pdf?sequence=1

  146. 146
    A PRELIMINARY STUDY EXAMINING THE BURST STRENGTH OF VASCULAR TUBULAR SCAFFOLDS

    OZTEMUR JANSET*, ÖZDEMIR SUZAN, SEZGIN HANDE AND YALCIN-ENIS IPEK

    Istanbul Technical University, Textile Engineering Department, Istanbul, Turkey

    https://dspace.tul.cz/bitstream/handle/15240/167241/VaT_2023_1_12.pdf?sequence=1

  147. 147
    FABRICATION AND CHARACTERIZATION OF ELECTROSPUN ANTHOCYANIN-LOADED POLYLACTIDE NANOFIBERS

    PALAK HANDAN* AND KAYAOGLU BURÇAK KARAGÜZEL

    http://vat.ft.tul.cz/2023/1/VaT_2023_1_13.pdf

  148. 148
    Incorporating antioxidative peptides within nanofibrous delivery vehicles: Characterization and in vitro release kinetics

    ,

    Istanbul Technical University, Faculty of Chemical and Metallurgical, Department of Food Engineering, 34469, Maslak, Istanbul, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S2212429223003115

  149. 149
    Synthesis of Graphene Oxide/ Poly(Vinyl Alcohol) Composite and Investigation of Graphene Oxide Effect on Diameter and Pore Size of Poly(Vinyl Alcohol) Nanofibers

    Zeeshan Abdullah, Abdul Waheed Anwar, Inam Ul Haq*, Zunair Arslan, Asifa Mubashar, Shan Ahmad, Abdul Waheed,

    Muhammad Ajmal, Imrza Imran Aziz Baig

     

    https://www.scientific.net/JNanoR.78.23

  150. 150
    A Novel Strategy as a Potential Rapid Therapy Modality in the Treatment of Corneal Ulcers: Fluconazole/Vancomycin Dual Drug-Loaded Nanofibrous Patches
  151. 151
    Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue
  152. 152
    Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers
  153. 153
    Preparation and Evaluation of Core–Shell Nanofibers Electrospun from PEU and PCL Blends via a Single-Nozzle Spinneret

    https://pubs.acs.org/doi/abs/10.1021/acsapm.2c02076

  154. 154
    Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers

    1,†,

    1,† and

    1,2,*

    1
    Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
    2
    School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
    *
    Author to whom correspondence should be addressed.
    These authors contributed equally to this work.
     

    https://www.mdpi.com/2077-0375/13/4/380

  155. 155
    Investigations on the Mechanical Properties of PC and ABS Electrospun Nanofiber Embedded Glass Fiber Reinforced Composite
    • Mehmet Safa Bodur (Yeditepe University)
    • Alper Adrian Baysan (KU Leuven)
    • Merve Uysal Komurlu (Texas A&M University)
    • Ali Avci (Hakkari University)

    https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11227080

  156. 156
    Superhydrophobic Self-Cleaning Membranes Made by Electrospinning
  157. 157
    A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors

    1,

    1,

    1,

    2 and

    1,2,*

     
    1
    School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
    2
    School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
    *
    Author to whom correspondence should be addressed.
     
  158. 158
    Development of a laminable, cellulose-based Separator for Lithium-Ion Batteries

    Master’s Thesis submitted by

    Jakob Veitl

    Ergoldsbach

    Development of a laminable, cellulose-based Separator for Lithium-Ion Batteries

  159. 159
    Photocatalytic and Antimicrobial Properties of Electrospun TiO2–SiO2–Al2O3–ZrO2–CaO–CeO2 Ceramic Membranes
    Nuray Yerli Soylu*

     

    • Anıl Soylu
    • Dilara Nur Dikmetas
    • Funda Karbancioglu-Guler
    • Sadriye Kucukbayrak, and 
    • Melek Erol Taygun

    https://pubs.acs.org/doi/full/10.1021/acsomega.2c06986

  160. 160
    Bioprospecting Antarctic Microalgae as Anticancer Agent Against PC-3 and AGS Cell Lines

    , , , ,

    a
    Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Esenler-Istanbul, TURKIYE
    b
    Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, TURKIYE

     

    https://www.sciencedirect.com/science/article/abs/pii/S1369703X23000955

  161. 161
    Co-axial electrospinning of PLLA shell, collagen core nanofibers for skin tissue engineering

    Erkan T Baran, Aydin Tahmasebifar and Bengi Yilmaz

     

    https://journals.sagepub.com/doi/abs/10.1177/08853282231162200

  162. 162
    Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue

    by

    1,2,

    1,2,

    1,2,

    1,

    1,2,

    3,4,5,

    3,6,7,

    8,

    4,5,9,

    1,2,* and

    3,4,5,10

     
     
    1
    Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
    2
    Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
    3
    Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
    4
    National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
    5
    National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
    6
    Research Institute of the University of Bucharest—ICUB, 050567 Bucharest, Romania
    7
    Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Calugareni, Romania
    8
    Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey
    9
    Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
    10
    Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
    *
    Author to whom correspondence should be addressed.
     
  163. 163
    Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications

    , , ,

    a
    Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
    b
    Graduate School of Natural and Applied Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
    c
    Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S1751616123001261

  164. 164
    Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles

    by

    1

    1

    2

    2 and

    1

    1
    Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, MS 39216, USA
    2

    Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39216, USA

     
  165. 165
    A chemosensitive based ammonia gas sensor with PANI/PEO- ZnO nanofiber composites sensing layer
  166. 166
    Silymarin-loaded electrospun polycaprolactone nanofibers as wound dressing

    Aisegkioul Sali, Sebnem Duzyer Gebizli & Gokhan Goktalay

     

    https://link.springer.com/article/10.1557/s43578-023-00959-1

  167. 167
    Oxime-Functionalized, Nonwoven Nanofabrics for Rapid, Inexpensive Decontamination of a Nerve Agent Simulant

    Priyanka Biswas

    • Dylan B. Shuster
    • Busra Sonmez Baghirzade
    • Randall A. Scanga
    • Sophie A. Harris
    • Cynthia N. Tran
    • Onur G. Apul*, and 
    • James F. Reuther*

    https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05216

  168. 168
    Accessibility of adsorption sites for superfine powdered activated carbons incorporated into electrospun polystyrene fibers

    , , , , ,

    a
    Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States
    b
    Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
    c
    Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States
    d
    Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
    e
    Department of Chemistry, University of Maine, Orono, ME 04469, United States

     

    https://www.sciencedirect.com/science/article/abs/pii/S1385894723007404

  169. 169
    Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri- axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance

    , , , , , , , , ,

    a
    Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
    b
    Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey
    c
    UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
    d
    Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
    e
    Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
    f
    I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
    g
    Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
    h
    Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
    i
    Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0378517323001369

  170. 170
    Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether
     
     
    1
    The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
    2
    Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France
    3
    The Nancy & Stephan Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa 3200003, Israel
    *

    Authors to whom correspondence should be addressed.

    https://www.mdpi.com/2079-4991/13/4/635

     

  171. 171
    Improved delivery of hydrophobic drugs by a self-microemulsifying drug delivery system and electrospun polymer fibers

    1. Prof. Dr. Karsten Mäder
    2. Prof. Dr. Eyal Zussman
    3. PD Dr. Christian Schmelzer

    https://opendata.uni-halle.de/bitstream/1981185920/100845/1/Dissertation_MLU_2022_ZechJohanna.pdf

  172. 172
    Controlled Release of Gentamicin from Electrospun Poly(Vinyl Alcohol)/Gelatin Nanofibers: The Effect of Crosslinking Time Using Glutaraldehyde Vapor

    Dilruba BaykaraEsra PilavciDr. Sumeyye CesurElif IlhanDr. Songul UlagDr. Mustafa SengorEwa Kijeńska-GawrońskaProf. Oguzhan Gunduz

    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/slct.202203681

  173. 173
    Enhanced flexibility and thermal conductivity of HfC decorated carbon nanofiber mats

    , , ,

    Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA

    https://www.sciencedirect.com/science/article/abs/pii/S0008622323000623

  174. 174
    Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications
    Aysen Akturk
    Department of Chemical Engineering, Istanbul Technical University, Istanbul34469, Turkey
     
  175. 175
    Recent progress, bottlenecks, improvement strategies and the way forward of membrane distillation technology for arsenic removal from water: A review

    a
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    b
    Chemical Engineering Department, Sabratha Faculty of Engineering, Sabratha University, Libya
    c
    College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214714423000211

  176. 176
    Organomodified Nanoclay With Boron Compounds Is Improving Structural And Antibacterial Properties Of Nanofibrous Matrices

    a
    Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
    b
    Bioengineering Department, Hacettepe University, Beytepe, Ankara, Turkey
    c
    Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0939641123000152

  177. 177
    Diatom Silica Frustules-Doped Fibers for Controlled Release of Melatonin for Bone Regeneration

    a
    Department of Genetics and Bioengineering, Istanbul Bilgi University, Turkey
    b
    Department of Engineering Sciences, Middle East Technical University, Turkey
    c
    International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) – International Research Agenda, Lodz University of Technology, Poland
    d
    BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey
    e
    MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Turkey

     

    https://www.sciencedirect.com/science/article/abs/pii/S0014305723000411

  178. 178
    Recent progress, bottlenecks, improvement strategies and the way forward of membrane distillation technology for arsenic removal from water: A review

    a
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    b
    Chemical Engineering Department, Sabratha Faculty of Engineering, Sabratha University, Libya
    c
    College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214714423000211

  179. 179
    Scale-up strategies for electrospun nanofiber production

    a
    School of Textile Science and Engineering, Wuhan Textile University, Wuhan, China
    b
    School of Textile Science and Engineering, Tiangong University, Tianjin, China
    c
    Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore, Singapore

     

    https://www.sciencedirect.com/science/article/pii/B9780128230329000209

  180. 180
    The highly absorbent polyurethane/polylactic acid blend electrospun tissue scaffold for dermal wound dressing
  181. 181
    Single and multi-dose drug loaded electrospun fiber mats for wound healing applications
     
  182. 182
    An Investigation into the Effects of Electric Field Uniformity on Electrospun TPU Fiber Nano-Scale Morphology
     
    Nanocomposites and Mechanics Laboratory (NCM Lab), University of New Brunswick, Fredericton, NB E3B 5A3, Canada
    *
    Author to whom correspondence should be addressed.
  183. 183
    Production and characterization of Polyamide 6.6 based nanofiber membranes for filter applications by electrospinning method

    Abdullah Gül1* page1image638194432, İsmail Tiyek1 page1image638196832, Gökmen Zor2 page1image638199088, Nurullah Yazıcı3
    1Department of Textile Engineering, Faculty of Engineering and Architecture, Kahramanmaraş Sutcu Imam University, Kahramanmaras, 46100, Türkiye

    2Department of Textile, Clothing, Shoes and Leather, Vocational School of Technical Sciences, 7 Aralık Üniversity, 79000, Kilis, Türkiye 3Department of Maths and Science Education, Faculty of Education, Gaziosmanpaşa University, 60250, Tokat, Türkiye

     

    https://www.researchgate.net/profile/Abdullah-Guel-2/publication/366920801_Production_and_characterization_of_Polyamide_66_based_nanofiber_membranes_for_filter_applications_by_electrospinning_method/links/63b8802ea03100368a5b2745/Production-and-characterization-of-Polyamide-66-based-nanofiber-membranes-for-filter-applications-by-electrospinning-method.pdf

  184. 184
    Desalination technologies, membrane distillation, and electrospinning, an overview

    a
    Department of Chemistry, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
    b
    Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
    c
    Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
    d
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
    e
    Department of Chemistry, King Abdulaziz University, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
    f
    Center of Excellence in Desalination Technology, King Abdulaziz University, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
    g
    Department of Mechanical Engineering, King Abdulaziz University, P. O. Box 80200, Jeddah, Saudi Arabia

     

    https://www.sciencedirect.com/science/article/pii/S2405844023000178

  185. 185
    Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges

    a
    Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing, 210037, China
    b
    Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
    c
    Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China

     

    https://www.sciencedirect.com/science/article/pii/S0023643822013093

  186. 186
    Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes
  187. 187
    Nanofiber production from rose water and mate plant extract solutions using environmentally friendly electrospinning

    ÇAĞLAR SİVRİ1, AMINODDIN HAJI2

    1Bahçeşehir University, Faculty of Engineering and Natural Sciences, Department of Management Engineering, Ciragan Cd. Yali Sk. No=1, 34349, Istanbul, Türkiye
    e-mail: caglar.sivri@eng.bau.edu.tr

    2Department of Textile Engineering, Yazd University, Yazd 8915818411, Iran e-mail: ahaji@yazd.ac.ir

    https://www.researchgate.net/publication/366517938_Nanofiber_production_from_rose_water_and_mate_plant_extract_solutions_using_environmentally_friendly_electrospinning

     

     

  188. 188
    Fabrication and Application of Halloysite Nanotube-Embedded Photocatalytic Nanofibers with Antibacterial Properties
  189. 189
    Battery anode design: From 1D nanostructure to 3D nanoarchitecture – Enabling next-generation energy storage technology

    a
    Oregon Renewable Energy Center (OREC), Klamath Falls, OR 97601, USA
    b
    Department of Manufacturing and Mechanical Engineering and Technology, Oregon Institute of Technology, Klamath Falls, OR 97601, USA
    c
    Industrial Engineering Department, BINUS Graduate Program—Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
    d
    Xtreme Materials Lab, Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
    e
    Department of Engineering, La Trobe University, Melbourne, VIC 3086, Australia

    https://www.sciencedirect.com/science/article/abs/pii/S0167931722002210

     

  190. 190
    Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage

    a
    Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    b
    Department of Electrical and Computer Engineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    c
    Mechanical Engineering Department, Materials Science and Engineering Program, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    d
    Department of Electrical and Electronics Engineering, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S2352152X22023180

     

  191. 191
    Electrospun Polyacrylonitrile Silver(I,III) Oxide Nanoparticle Nanocomposites as Alternative Antimicrobial Materials

     

    William B. WangChieh-Yu PanEng-Yen HuangBai-Jing PengJonathan Hsu*, and Jude C. Clapper*

    https://pubs.acs.org/doi/full/10.1021/acsomega.2c06208

     

  192. 192
    Electroblown titanium dioxide and titanium dioxide/silicon dioxide submicron fibers with and without titania nanorod layer for strontium(II) uptake

    Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland

    https://www.sciencedirect.com/science/article/pii/S2666821122001946

     

  193. 193
    Tailor-made novel electrospun polycaprolactone/polyethyleneimine fiber membranes for laccase immobilization: An all-in-one material to biodegrade textile dyes and phenolic compounds

     

    a
    Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
    b
    Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0045653522039716

  194. 194
    Advanced Functional Hybrid Proton Exchange Membranes Robust and Conductive at 120 °C

    Jason Richard, Fatima Haidar, Madeline K. Alzamora, Manuel Maréchal, Natalia Rovira,

    Christophe Vacquier, Clément Sanchez, and Christel Laberty-Robert

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202201601

  195. 195
    Investigation of continuous PAN nanofiber yarn produced with polymer additives

    Ismail Borazan

    a Faculty of Engineering, Architecture and Design, Department of Textile Engineering, Bartın University, Bartın, Turkey;b Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey.

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2150957

  196. 196
    Design of highly selective, and sensitive screen-printed electrochemical sensor for detection of uric acid with uricase immobilized polycaprolactone/polyethylene imine electrospun nanofiber

    Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S001346862201831X

     

  197. 197
    Preparation of nanodelivery systems for oral administration of low molecular weight heparin

    a
    Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
    b
    Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S1773224722009790

  198. 198
    Advanced Functional Hybrid Proton Exchange Membranes Robust and Conductive at 120 °C

    Jason Richard, Fatima Haidar, Madeline K. Alzamora, Manuel Maréchal, Natalia Rovira,

    Christophe Vacquier, Clément Sanchez, and Christel Laberty-Robert*

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202201601

     

  199. 199
    Investigation of continuous PAN nanofiber yarn produced with polymer additives

    Ismail Borazan

    a Faculty of Engineering, Architecture and Design, Department of Textile Engineering, Bartın University, Bartın, Turkey;b Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey

    iborazan@itu.edu.tr

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2150957

  200. 200
    Stimuli-responsive nanoparticle-nanofiber hybrids for drug delivery and photodynamic therapy

    a
    Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
    b
    Karlsruhe Institute of Technology, Institute of Functional Interfaces – IFG, 76344 Karlsruhe, Germany
    c
    Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, 06560 Ankara, Turkey
    d
    Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, Korea
    e
    Department of Material Science and Engineering, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey
    f

    Department of Biomedical Engineering, İzmir Democracy University, 35140 İzmir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0378517322009978

  201. 201
    Photothermal Electrospun Nanofibers Containing Polydopamine-Coated Halloysite Nanotubes as Antibacterial Air Filters
    • Oyku Demirel
    • Sarp Kolgesiz
    • Sena Yuce
    • Serap Hayat Soytaş
    • Derya Y. Koseoglu-Imer, and 
    • Hayriye Unal*

    https://pubs.acs.org/doi/full/10.1021/acsanm.2c04026

     

     

  202. 202
    DESIGN AND DEVELOPMENT OF A NANOFIBER REINFORCED MULTILAYERED CLOTH FACE MASK

    Handan Palak1(*) page1image1283205808, Burçak Karagüzel Kayaoglul

    1 Department of Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Gumussuyu Campus, Inonu Cad., No. 65, Istanbul, Turkey

    http://212.51.210.149/xmlui/bitstream/handle/11652/4458/26_Design_devol_Palak_Autex_2022.pdf?sequence=1&isAllowed=y

  203. 203
    A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing

    a
    Faculty of Pharmacy, Department of Analytical Chemistry, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
    b
    Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
    c
    Department of Engineering Fundamental Sciences, Si̇vas University of Science and Technology, Sivas, Turkey
    d
    Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara, Turkey
    e
    Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
    f
    The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara, Turkey
    g
    Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
    h
    Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya, Turkey
    https://www.sciencedirect.com/science/article/abs/pii/S0026265X22009766
  204. 204
    Electrospinning of PVDF nanofibers incorporated cellulose nanocrystals with improved properties

    Deniz Aydemir, Eser Sözen, Ismail Borazan, Gökhan Gündüz, Esra Ceylan, Sezgin Koray Gulsoy, Ayben Kılıç-Pekgözlü & Timucin Bardak

    https://link.springer.com/article/10.1007/s10570-022-04948-1

  205. 205
    Atmospheric pressure plasma jet treatment of PLA/PAni solutions: Enhanced morphology, improved yield of electrospun nanofibers and concomitant doping behaviour

    YongjianGuoaRoubaGhobeiraaZuxinSunbParisaShaliaRinoMorentaNathalieDe Geytera

    a
    Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pieterfaurea 41, B4, 9000, Ghent, Belgium
    b
    Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
    https://www.sciencedirect.com/science/article/abs/pii/S0032386122009909
  206. 206
    Point-of-need quantitative detection of trihalomethanes in environmental water samples using a highly sensitive and selective fiber-based preconcentration system
    Hadi Rouhi, Colton Duprey, Clint Cook, Emily Linn, Sarah Veres, George Chen, Ali Alshaikh, Yang Lu, Leigh Terry, Mark Elliott, Evan K. Wujcik

    Hadi Rouhi and Colton Duprey contributed equally to this study.

    Funding information: Department of the Interior, Grant/Award Numbers: 20-WRC-207214-UA-Wujcik, G16AP00037; University of Alabama, Grant/Award Number: P200A180056; Research Experience for Undergraduates, Grant/Award Number: 1851974

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.53294

  207. 207
    Hybrid nanofibers opportunities and frontiers – A review
    Muzafar A.Kanjwal, Amal AlGhaferi
     
    Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates

    Received 1 September 2022, Revised 20 October 2022, Accepted 22 October 2022, Available online 28 October 2022, Version of Record 30 October 2022.

    https://www.sciencedirect.com/science/article/abs/pii/S2213343722017237

  208. 208
    Fabrication and characterization as antibacterial effective wound dressing of hollow polylactic acid/polyurethane/silver nanoparticle nanofiber
     

    Sema Samatya Yilmaz & Ayse Aytac,

    Polymer Science and Technology Department, Kocaeli University, Kocaeli, Turkey,

    Engineering Faculty, Chemical Engineering Department, Kocaeli University, 41380, Izmit/Kocaeli, Turkey

    https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.18842

  209. 209
    Electrospun Ca3Co4-xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties
     

    Katharina Kruppa a*, Itzhak I. Maor b*, Frank Steinbach a, Vadim Beilin b, Meirav Mann-Lahav b, Mario Wolf a, Gideon S. Grader b,c**, Armin Feldhoff a***

    aInstitute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, D-30167 Hannover, Germany

    bWolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

    cGrand Technion Energy program (GTEP), Technion – Israel Institute of Technology, Haifa 32000, Israel

    https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.18842

  210. 210
    The effect of electrospinning parameters on morphology and diameter of polyethylene terephthalate (PET) and recycled polyethylene terephthalate (r-PET) nanofibers

    Hüsnü Aydemir, Oğuz Demiryürek

    Vocational School of Technical Sciences, Textile Technology Division, Bingöl University,

    Engineering Faculty, Textile Engineering Department, Erciyes University

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2131341

  211. 211
    Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application

    Atilla Eren MamukÇaǧdaş Koçak, Sema Aslan, and Derya Bal Altuntaş

    ACS Appl. Energy Mater.

    https://pubs.acs.org/doi/full/10.1021/acsaem.2c01287

  212. 212
    Understanding the effect of polymer concentrations on the phase formation and activity of electrospun nanofibrous photocatalyst
    Pooja P.Sarngan, Agasthiyaraj Lakshmanan, Abhijit Dutta, Debabrata Sarkar
    Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India

    https://www.sciencedirect.com/science/article/abs/pii/S0927775722019379

  213. 213
    Direct Observation of Adhesion and Mechanical Behavior of a Single Poly(lactic-co-glycolic acid) (PLGA) Fiber Using an In Situ Technique for Tissue Engineering
    Lihua LouTanaji PaulBrandon A. AguiarTyler DolmetschCheng Zhang, and Arvind Agarwal*

    ACS Appl. Mater. Interfaces

    https://pubs.acs.org/doi/abs/10.1021/acsami.2c09665

  214. 214
    Producing Spinnable Regenerated Cellulosic Fibers from Palm Fibers for Use in the Textile Industry

    Shahad Ibrahim Omar Badr

    Leeds British Academy, Jeddah, Kingdom of Saudi Arabia.

    https://www.scirp.org/journal/paperinformation.aspx?paperid=119826

  215. 215
    In situ preparation and functionalization of nanofibers by a combination of electrospinning and click chemistry methods

    Kevser Ozdemir, Mehmet Atilla Tasdelen

    Department of Polymer Materials Engineering, Faculty of Engineering, Yalova

    https://link.springer.com/article/10.1007/s13726-022-01094-0

  216. 216
    Evaluation of In Vitro Bioactivity, Cytotoxicity, and Drug Release Behavior of Er2O3 and Tb2O3-Containing Bioactive Glass Particles and Nanofibers

    Begüm Rahman, Aylin M. Deliormanlı & Harika Atmaca

    Department of Metallurgical and Materials Engineering, Manisa Celal Bayar University, Yunusemre, Manisa, Turkey
    https://link.springer.com/article/10.1007/s10904-022-02373-2

  217. 217
    Lactose hydrolyzing activity of the lactase immobilized polycaprolactone and silk fibroin-based nanofiber and nitrocellulose membrane

    Sümeyye Yılmaz-Karaoğlu, Begüm-Gürel, Gökmen Tuğba Tunali-Akbaya

    Marmara University, Dentistry Faculty, Department of Basic Medical Sciences, Basibuyuk, Maltepe, İstanbul, Turkey.
    https://www.sciencedirect.com/science/article/abs/pii/S2212429222002875
  218. 218
    Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications

    Edwin Wong, Shouka Parvin Nejad, Katya A. D’Costa, Nataly Machado Siqueira, Monica Lecce, J. Paul Santerre & Craig A. Simmons

    Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada
    Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
  219. 219
    Advances in plastic waste-derived carbon nanomaterial for supercapacitor applications: Trends, challenges and prospective

    Samit Kumar, Nayaka S.M. Saurabha, Abhijeet Kar, Bibhuti Bhusan Sahoo, Naresh Kumar Sahoo, Prasanta Kumar Sahoo

    Department of Mechanical Engineering, Siksha ‘O’ Anusandhan, Deemed to be University, Bhubneswar 751030, India
    Department of Chemistry, Environmental Science and Technology Program, Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha 751030, India
  220. 220
    Electrospun fibers of liquid crystal mixtures

    Çağdaş Koçak, Atilla Eren Mamuk, Çiğdem Elif Demirci Dönmez & Mehmet Poyraz

    Liquid Crystals Laboratory, Department of Physics, Mugla Sitki Kocman University

  221. 221
    Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

    1Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, 38280 Kayseri, Turkey

    2Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560 Ankara, Turkey

     
  222. 222
    In situ preparation of nanohydroxyapatite/alginate composites as additives to PVA electrospun fibers as new bone graft materials

    G.S.CorreiaabJ.S.A.FalcãocA.G.Castro NetodY.J.A.SilvaaL.T.B.MendonçaeA.O.S.BarrosfR.Santos-OliveirafW.M.de AzevedoagS.Alves JunioraeB.S.Santosah

    aMetal Mechanic Department, Federal Institution of Education, Science and Technology of Maranhão, 65030-005, São Luís, MA, Brazil

    c Education and Health Center, Federal University of Campina Grande, 58175-000, Cuité, PB, Brazil

    dMaurício de Nassau University Center, Unit Graças, 52011-000, Recife, PE, Brazil

    aGraduate Program in Materials Science, Federal University of Pernambuco, 50740-560, Recife, PE, Brazil
     
    eChemical Technology Department, Federal University of Maranhão, 65080-805, São Luís, MA, Brazil
     
    fBrazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, RJ, Brazil
    agFundamental Department of Chemistry, Federal University of Pernambuco, Rare Earth Laboratory – BSTR, 50740-560, Recife, PE, Brazil
    aeChemical Technology Department, Federal University of Maranhão, 65080-805, São Luís, MA, Brazil
    ahPharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
     
  223. 223
    An investigation on structural, optical and magnetic properties of hard-soft SrFe12O19/(CoEu0.02Fe1.98O4)x nanofiber composites

    YassineSlimaniMunirah A.AlmessiereaSadikGunerAbdulhadiBaykalMuratSertkolFatimah S.AlahmaricEman M.AlsulamiIsmail A.Auwalf

    a Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    aDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    cDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    dInstitute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany

    eDeanship of Preparatory Year, Building 450, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
     
    cDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
     
    fDepartment of Chemistry, Sule Lamido University, Kafin Hausa 731, Nigeria
     
  224. 224
    Electrospun fibers as drying additive in cement-bonded alumina castables

    Enrico Storti,Cameliu Himcinschi,Marc Neumann,Jana Hubálková,Christos G. Aneziris

    aInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

    bInstitute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Straße 23, Freiberg, 09599 Germany

    cInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

    dInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

     
  225. 225
    Effect of nanofiber as nanopore maker agent on the performance of clinker bricks

    Cagrialp Arslana   Ismail Borazana  OsmanGencelb  ErtugrulErdogmusc  MucahitSutcud

    aBartin University, Faculty of Engineering, Architecture and Design, Department of Textile Engineering, 74100 Bartin, Turkey

    bBartin University, Faculty of Engineering, Architecture and Design, Department of Civil Engineering, 74100 Bartin, Turkey

    cBartin University, Faculty of Engineering, Architecture and Design, Department of Environmental Engineering, 74100 Bartin, Turkey

    dIzmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Materials Science and Engineering, 35620 Izmir, Turkey

     
  226. 226
    Shape-Stable Composites of Electrospun Nonwoven Mats and Shear-Thickening Fluids

    Junli Hao, Jie Ding, and Gregory C. Rutledge

    1Department of Chemical Engineering, Massachusetts Institute of Technology

    2Land Division, Defense Science and Technology Group, Fishermans Bend VIC 3207, Australia

    3Department of Chemical Engineering, Massachusetts Institute of Technology

     
  227. 227
    Valorization of Waste Chicken Feathers: Fabrication and Characterization of Novel Keratin Nanofiber Conduits for Potential Application in Peripheral Nerve Regeneration

    Mduduzi Khumalo,1,2 Bruce Sithole,1,2 Tamrat Tesfaye,1,2,3 and Prabashni Lekha2

    1University of KwaZulu-Natal, Discipline of Chemical Engineering, Durban, South Africa

    2Biorefinery Industry Development Facility, Chemical Cluster, Council for Scientific and Industrial Research, Durban, South Africa

    3Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia

     
  228. 228
    Targeted delivery of sodium metabisulfite (SMBS) by pH-sensitive Eudragit L100-55 nanofibrous mats fabricated through advanced coaxial electrospinning

    Changning Yu, Quintin Litke, Qiao Li, Peng Lu, Shangxi Liu, Francis Diony, Joshua Gong, Chengbo Yang & Song Liu.

    Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada.
     
     
  229. 229
    Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections
    Cansu Ulker Turan and Yuksel Guvenilir.
     
    Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
     
     
  230. 230
    Electrospinning of ampicillin trihydrate loaded PLA nanofibers: effect of drug concentration and PLGA addition on its morphology, drug delivery and mechanical properties
    Tuğba Eren Böncü and Nurten Ozdemir
     
    Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes
    University, 38280 Kayseri, Turkey and 2 Faculty of Pharmacy, Department of
    Pharmaceutical Technology, Ankara University, 06560 Ankara, Turkey.
     
  231. 231
    Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings
  232. 232
    Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis
    José A. Reyes-Aguilera, Liliana Villafaña-López, Elva C. Rentería-Martínez, Sean M. Anderson and Jesús S. Jaime-Ferrer.
    https://www.mdpi.com/journal/membranes
     
     
  233. 233
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    Marwa Alazzawi, Nabeel Kadim Abid Alsahib and Hilal Turkoglu Sasmazel.
     
     
     
  234. 234
    Layer-By-Layer Assembled, Amphiphilic And Antibacterial Hybrid Electrospun Mat Made From Polypropylene And Chitosan Fibers
  235. 235
    Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
  236. 236
    Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system
    Meryem Yılmaz, Aylin Altan
     
    Mersin University
     
  237. 237
    Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility
    Fatma Nur Parin, Cigdem Inci Aydemir, Gokce Taner, Kenan Yildirim
     
    Bursa Technical University
     
  238. 238
    Engineering multifunctional bactericidal nanofibers for abdominal hernia repair
    Anderson Oliveira Lobo, Samson Afewerki
     
    Harvard Medical School
     
  239. 239
    An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of carcino embriyonic antigen
  240. 240
    Polycaprolactone/silk fibroin electrospun nanofibers‐based lateral flow test strip for quick and facile determination of bisphenol A in breast milk
    Begüm Gürel‐Gökmen, Hava Dudu Taslak, Ozan Özcan, Necla İpar, Tuğba Tunali‐Akbay
     
    Marmara University
     
  241. 241
    Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties
    Tugba Eren Boncu, Nurten Ozdemir
     
    Ankara University
     
  242. 242
    Preparation of Silver Cyclohexane di Carboxylate: Β-cyclodextrin Inclusion Complexes and Their Use in the Production of Poly(vinyl alcohol) Nanowebs
    Rıza ATAV, Aylin YILDIZ, Derman VATANSEVER BAYRAMOL, Ahmet Özgür AĞIRGAN , Uğur ERGÜNAY
     
    Tekirdağ Namık Kemal University
     
  243. 243
    Holistic Investigation of the Electrospinning Parameters for High Percentage of β-phase in PVDF Nanofibers
    Rahul Kumar Singh, Sun Woh Lye, Jianmin Miao
     
    Nanyang Technological University, Singapore
     
  244. 244
    Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air
    Esra Buyukada-Kesici, Elifnur Gezmis-Yavuz, Dila Aydina, Elif Cansoy, Kadir Alp, Derya Y.Koseoglu-Imer
     
  245. 245
    Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion
    Rumeysa Bilginer, Dilce Ozkendir‐Inanc, Umit Hakan Yildiz, Ahu Arslan‐Yildiz

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.50287

  246. 246
    Electrospun core-sheath PAN@ PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by formation of a heterojunction
    G Capilli, P Calza, C Minero, M Cerruti.  McGill University

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  247. 247
    Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier
    Judith Vergara-Figueroa, Serguei Alejandro-Martin, Fabiola Cerda-Leal, William Gacitúa. Universidad del Bío-Bío

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  248. 248
    Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing
    Rahul Sahay , Komal Agarwal, Anbazhagan Subramani , Nagarajan Raghavan

    https://scholar.google.com.tr/scholar_url?url=https://www.mdpi.com/2073-4360/12/10/2376/pdf&hl=tr&sa=X&d=15229915842923991540&ei=HfiNX_izGIy0ygT3m6bYBw&scisig=AAGBfm2QTPnRcmJgdY7WJqhwO9OTLvnGXA&nossl=1&oi=scholaralrt&hist=NSAhIeoAAAAJ:16172062561605054270:AAGBfm0NgWrUaFisOH1m3cVrJiuKCbAA7g&html=

  249. 249
    Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering
    Parinaz Saadat, Esbah Tabaei, Mahtab Asadian, Rouba Ghobeira

    https://www.sciencedirect.com/science/article/abs/pii/S0144861720313849

  250. 250
    Functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications
    Danilo Martins dos Santos, Daniel S. Corrêa, Eliton S Medeiros, Juliano Oliveira, and LUIZ Henrique C. MATTOSO

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12410

  251. 251
    Composite Membranes with Nanofibrous Cross-hatched Supports for Reverse Osmosis Desalination
    Seungju Kim , Daniel E. Heath, and Sandra E. Kentish

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12588

  252. 252
    A Bimodal Protein Fabric Enabled via In-Situ Diffusion for High-Performance Air Filtration
  253. 253
    THE DEVELOPMENT AND OPTIMIZATION OF FLUORESCENT SENSORS FOR CONTINUOUS MONITORING OF PHYSIOLOGICAL MOLECULES IN VIVO
  254. 254
    Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering
    Koushanee Madub Nowsheen Goonoo Fanny Gimié Imade Ait Arsa HolgerSchönherr Archana Bhaw-Luximon

    https://www.sciencedirect.com/science/article/pii/S014486172031198X

  255. 255
    Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals
  256. 256
    Electrospinning of PLA and PLA/POSS nanofibers: Use of Taguchi optimization for process parameters
  257. 257
    Centella Asiatica Extract Containing Bilayered Electrospun Wound Dressing
    Ismail Alper Isoglu & Nuray Koc

    https://link.springer.com/article/10.1007/s12221-020-9956-y

  258. 258
    Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis
    JS Jaime-Ferrer, M Mosqueda-Quintero

    https://www.degruyter.com/view/journals/ijcre/ahead-of-print/article-10.1515-ijcre-2020-0020/article-10.1515-ijcre-2020-0020.xml

  259. 259
    Electrochemical evaluation of Titanium (IV) Oxide/Polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes
    Sema Aslan, Derya Bal Altuntaş, Çağdaş Koçak, Hülya Kara Subaşat

    https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.202060239

  260. 260
    Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review
    Brabu Balusamy, Asli Celebioglu, Anitha Senthamizhan, Tamer Uyar

    https://www.sciencedirect.com/science/article/abs/pii/S0168365920304223

  261. 261
    Stabilizing 3 nm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions
    Wanlin Fu, Zhihui Li, Yunpeng Wang, Yueming Sun, Yunqian Dai. Southeast University, Nanjing.

    https://www.sciencedirect.com/science/article/abs/pii/S1385894720321410#!

  262. 262
    Photoluminescence Properties of a New Sm(III) Complex/PMMA Electrospun Composite Fibers
    Hulya Kara, Gorkem Oylumluoglu & Mustafa Burak Coban. Balikesir University.

    https://link.springer.com/article/10.1007/s10876-019-01677-7

  263. 263
    Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering
    Aysen Akturk, Melek Erol Taygun, Gultekin Goller Istanbul Technical University Scientific Research Projects Foundation, Grant/Award Number: 38881

    https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25545

  264. 264
    Preparation And Characterization Of Polyvinyl Borate/Polyvinyl Alcohol (PVB/PVA) Blend Nanofibers

    Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035

    (http://onlinelibrary.wiley.com/doi/10.1002/app.35035/full)

  265. 265
    The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

    Öteyaka, M. O., Özel, E., Yıldırım, M. M., Aslan, M. H., Oral, A. Y., Özer, M., & Çaglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116

    (https://aip.scitation.org/doi/abs/10.1063/1.3663116)

  266. 266
    Initiated Chemical Vapor Deposition Of Ph Responsive Poly(2-Diisopropylamino)Ethyl Methacrylate Thin Films

    Mustafa Karaman, Nihat Çabuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083

    (http://www.sciencedirect.com/science/article/pii/S0040609012008140)

  267. 267
    Sıcak Filament Destekli Kimyasal Buhar Biriktirme Yöntemi İle Süper Su İtici Nano Kaplama Sentezi

    Çabuk, N. (2012). Sıcak filament destekli kimyasal buhar biriktirme yöntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)

  268. 268
    Preparation And Characterization Of Polyvinyl Alcohol/Carbon Nanotube (PVA/CNT) Conductive Nanofibers

    Köysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068

    (http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)

  269. 269
    The development and design of fluorescent sensors for continuous in vivo glucose monitoring

    Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.

    (http://hdl.handle.net/2047/d20004844)

  270. 270
    Effects of different sterilization methods on polyester surfaces

    Duzyer, Sebnem & Koral Koç, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.

    (https://www.researchgate.net/publication/272672175_Effects_of_different_sterilization_methods_on_polyester_surfaces)

  271. 271
    Polymer Nanofibers: Building Blocks for Nanotechnology

    Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.

    (https://books.google.com.tr/books?id=BnQoDwAAQBAJ&hl=tr)

  272. 272
    Affecting Parameters On Electrospinning Process And Characterization Of Electrospun Gelatin Nanofibers

    Nagihan Okutan, Pınar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

    (http://www.sciencedirect.com/science/article/pii/S0268005X13004062)

  273. 273
    Design Of A Novel Nozzle Prototype For Increased Productivity And Improved Coating Quality During Electrospinning

    UCAR, Nuray; UCAR, Mehmet; KIZILDAĞ, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.

    (https://www.researchgate.net/publication/293543273_DESIGN_OF_A_NOVEL_NOZZLE_PROTOTYPE_FOR_INCREASE_PRODUCTIVITY_AND_IMPROVED_COATING_QUALITY_DURING_ELECTROSPINNING)

  274. 274
    Electrospun Polyvinyl Borate/Poly(Methyl Methacrylate) (PVB/PMMA) Blend Nanofibers

    Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Dinç, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.

    (http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)

  275. 275
    Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review

    Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)

  276. 276
    Template Assisted Synthesis Of Photocatalytic Titanium Dioxide Nanotubes By Hot Filament Chemical Vapor Deposition Method

    Mustafa Karaman, Fatma Sarıipek, Özcan Köysüren, H. Bekir Yıldız, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.

    (http://www.sciencedirect.com/science/article/pii/S016943321301369X)

  277. 277
    UV Illumination Effects On Electrical Characteristics Of Metal–Polymer–Semiconductor Diodes Fabricated With New Poly(Propylene Glycol)-B-Polystyrene Block Copolymer

    Gökçen, M. Yıldırım, A. Demir, A. Allı, S. Allı, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.

    (http://www.sciencedirect.com/science/article/pii/S1359836813005519)

  278. 278
    Experimental Study on Relationship of Applied Power And Feeding Rate on Production of Polyurethane Nanofibre

    Oteyaka, M., Ozel, E., & Yıldırım, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gazı Unıversıty Journal Of Scıence, 26(4), 611-618.

    (http://gujs.gazi.edu.tr/article/view/1060000855)

  279. 279
    Electrospun Fibers For Vaginal Anti-HIV Drug Delivery

    Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.

    (http://www.sciencedirect.com/science/article/pii/S0166354213002829)

  280. 280
    Polivinil Borat Sentezin ; Elektrospin Yöntemiyle Nanofiber Hazırlanması Ve Karakterizasyonu

    Dinç, H. (2013). Polivinil borat sentezin; elektrospin yöntemiyle nanofiber hazırlanması ve karakterizasyonu (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)

  281. 281
    Commercial Viability Analysis of Lignin Based Carbon Fibre

    Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.

    (https://core.ac.uk/download/pdf/56378549.pdf)

  282. 282
    Electrospun Antibacterial Nanofibers: Production, Activity, And In Vivo Applications

    Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797

    (http://onlinelibrary.wiley.com/doi/10.1002/app.40797/full)

  283. 283
    Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions

    Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g

    (https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)

  284. 284
    Utilization Of Electrospun Nanofibers Containing Gelatin Or Gelatin-cellulose Acetate For Preventing Syneresis In Tomato Ketchup

    Hendessi, S. (2014). Jelatın Veya Jelatın-selüloz Asetat İçeren Nanoliflerin Domates Ketçaplarında Sineresisi Önleyici Olarak Kullanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    (http://hdl.handle.net/11527/2193)

  285. 285
    Thermal Conductivity Of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)

  286. 286
    Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

    Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.

    (http://www.waset.org/publications/10001167)

  287. 287
    Preparation And In Vitro Characterization Of Electrospun 45S5 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.

    (http://www.sciencedirect.com/science/article/pii/S0272884214013236)

  288. 288
    Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

    Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.

    (http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)

  289. 289
    Cellulose Acetate–Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability

    Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.

    (http://onlinelibrary.wiley.com/doi/10.1002/marc.201500037/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage=)

  290. 290
    Electrospinning Of Nanofibrous Polycaprolactone (PCL) And Collagen-Blended Polycaprolactone For Wound Dressing And Tissue Engineering

    Zeybek, B., Duman, M., & Ürkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.

    (http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)

  291. 291
    Phosphine-Functionalized Electrospun Poly(Vinyl Alcohol)/Silica Nanofibers As Highly Effective Adsorbent For Removal Of Aqueous Manganese And Nickel Ions

    Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.

    (http://www.sciencedirect.com/science/article/pii/S092777571530100X)

  292. 292
    Free-Standing Ni–Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

    Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.

    (http://www.sciencedirect.com/science/article/pii/S2211285515003742)

  293. 293
    Coaxial Electrospinning Of WO3 Nanotubes Functionalized With Bio-İnspired Pd Catalysts And Their Superior Hydrogen Sensing Performance

    Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.

    (http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)

  294. 294
    Electrospun Cerium And Gallium-Containing Silicate Based 13-93 Bioactive Glass Fibers For Biomedical Applications

    Aylin M. Deliormanlı, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.

    (http://www.sciencedirect.com/science/article/pii/S0272884215017241)

  295. 295
    Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide For Antibacterial Wound Dressing

    El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.

    (http://link.springer.com/article/10.1007/s12010-015-1962-y)

  296. 296
    Preparation, In Vitro Mineralization And Osteoblast Cell Response Of Electrospun 13–93 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.

    (http://www.sciencedirect.com/science/article/pii/S0928493115300394)

  297. 297
    Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions

    Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)

  298. 298
    Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

    Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.

    (https://books.google.com.tr/books?hl=tr&lr=&id=oGa2CgAAQBAJ&oi=fnd&pg=PA281&dq=inovenso&ots=D8gIXZpcRB&sig=V_3qD1gM2EfbBpWrKSkxMgXhGGA&redir_esc=y#v=onepage&q=inovenso&f=false)

  299. 299
    Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.

    (http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10198457&fileId=S205985211600164X)

  300. 300
    Alternative Solvent Systems For Polycaprolactone Nanowebs Via Electrospinning

    Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032

    (http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)

  301. 301
    Controlled Release Of A Hydrophilic Drug From Coaxially Electrospun Polycaprolactone Nanofibers

    Zahida Sultanova, Gizem Kaleli, Gözde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.

    (http://www.sciencedirect.com/science/article/pii/S0378517316302320)

  302. 302
    Recent Developments In Micro- And Nanofabrication Techniques For The Preparation Of Amorphous Pharmaceutical Dosage Forms

    Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.

    (http://www.sciencedirect.com/science/article/pii/S0169409X16300059)

  303. 303
    Fabrication Of Electrospun Nanofiber Catalysts And Ammonia Borane Hydrogen Release Efficiency

    Bilge Coşkuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.

    (http://www.sciencedirect.com/science/article/pii/S0360319915318632)

  304. 304
    Enhancement Of Mechanical And Physical Properties Of Electrospun PAN Nanofiber Membranes Using PVDF Particles

    Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)

  305. 305
    Proposal Of A Framework For Scale-Up Life Cycle Inventory: A Case Of Nanofibers For Lithium Iron Phosphate Cathode Applications

    Simon, B., Bachtin, K., Kiliç, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].

    (http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)

  306. 306
    Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation

    Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)

  307. 307
    On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength

    Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h

    (https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)

  308. 308
    Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Gönen, S. Ö., Erol Taygun, M., Aktürk, A., & Küçükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065

    (https://www.sciencedirect.com/science/article/pii/S0928493116304982)

  309. 309
    Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing

    Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011

    (https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)

  310. 310
    Fabrication of protein scaffold by electrospin coating for artificial tissue

    Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)

  311. 311
    Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing

    Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0

    (https://link.springer.com/article/10.1007/s11095-016-1987-0)

  312. 312
    Preparation and characterization of electrospun nanofibers containing glutamine

    Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028

    (https://www.sciencedirect.com/science/article/pii/S0144861716308177)

  313. 313
    Yapılı Poli(Akrilonitril-Vinil Asetat)/Grafen Oksit Yapıların Karakterizasyonu

    TİYEK, İ , YAZICI, M , ALMA, M , DÖNMEZ, U , YILDIRIM, B , SALAN, T , URUŞ, S , KARATAŞ, Ş , KARTERİ, İ . (2016). Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.

    (https://dergipark.org.tr/teksmuh/issue/24718/261437)

  314. 314
    Durable adhesives based on electrospun poly(vinylidene fluoride) fibers

    Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44393)

  315. 315
    Electrospinning—Commercial Applications, Challenges and Opportunities

    Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11

    (https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)

  316. 316
    US20160274030A1 Compositions and methods for measurement of analytes

    Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.

    (https://patents.google.com/patent/US20160274030A1/en)

  317. 317
    Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVECİ [5]. 358 412. Uludağ University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230

    (https://doi.org/10.17482/uujfe.04230)

  318. 318
    Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications

    Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9

    (https://link.springer.com/article/10.1007/s10853-016-0537-9)

  319. 319
    Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications

    Deliormanlı, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078

    (https://www.sciencedirect.com/science/article/pii/S0272884216320697)

  320. 320
    Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications

    Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)

  321. 321
    A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability

    İspirli Doğaç, Y., Deveci, İ., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120

    (https://www.sciencedirect.com/science/article/pii/S0141813016319572)

  322. 322
    Crystallisation of amorphous fenofibrate and potential of the polymer blend electrospun matrices to stabilise in its amorphous form

    Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/

    (https://ueaeprints.uea.ac.uk/61721/)

  323. 323
    Smartphone-based detection of dyes in water for environmental sustainability

    Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d

    (https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)

  324. 324
    Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications

    Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177

    (http://dx.doi.org/10.5772/64177)

  325. 325
    Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration

    Öztatlı, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663

    (https://doi.org/10.1557/adv.2016.663)

  326. 326
    Drug Delivery and Development of Anti-HIV Microbicides

    das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559

    (https://doi.org/10.1201/b17559)

  327. 327
    Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens

    Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon

    Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063

    DOI: 10.1021/acs.iecr.6b04256

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b04256)

  328. 328
    Dry-adhesives based on hierarchical poly (methyl methacrylate) electrospun fibers

    Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6

    (https://link.springer.com/article/10.1007/s00339-017-0816-6)

  329. 329
    Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

    Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911

    (https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)

  330. 330
    Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production

    Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)

  331. 331
    Thermoresponsive electrospun membrane with enhanced wettability

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e

    (https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)

  332. 332
    Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application

    Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)

  333. 333
    Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications

    Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  334. 334
    A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance

    Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  335. 335
    Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures

    Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6

    (https://link.springer.com/article/10.1007/s10853-017-1191-6)

  336. 336
    Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

    Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1

    (https://link.springer.com/article/10.1007/s10853-017-1240-1)

  337. 337
    Effects of pre-and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018

    (https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)

  338. 338
    Filtration of juices by using electrospun pan membrane

    ALTAY FİLİZ,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/İSPANYA, 17 Mayıs 2017

    (https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)

  339. 339
    Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials

    Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

    (https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)

  340. 340
    Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

    KARAMAN, M., GÜRSOY, M., AYKÜL, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec

    (https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)

  341. 341
    Mechanical properties and fatigue analysis on poly(ε- caprolactone)-polydopamine-coated nanofibers and poly(ε- caprolactone)-carbon nanotube composite scaffolds

    Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013

    (https://www.sciencedirect.com/science/article/pii/S0014305717302999)

  342. 342
    Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing

    Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027

    (https://www.sciencedirect.com/science/article/pii/S0378517317306269)

  343. 343
    Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells

    Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d

    (https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)

  344. 344
    Thermoresponsive Cellulose Acetate−Poly(N‐isopropylacrylamide) Core−Shell Fibers for Controlled Capture and Release of Moisture

    Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b07559 )

  345. 345
    Microfibrous scaffolds enhance endothelial differentiation and organization of induced pluripotent stem cells

    Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y

    (https://link.springer.com/article/10.1007/s12195-017-0502-y)

  346. 346
    Atmospheric pressure plasma jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning

    Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b08439)

  347. 347
    Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering

    Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046

    (https://www.sciencedirect.com/science/article/pii/S0144861717310718)

  348. 348
    Thermoresponsive electrospun fibers for water harvesting applications

    Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113

    (https://www.sciencedirect.com/science/article/pii/S0169433217330593)

  349. 349
    Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions

    Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092

    (https://www.sciencedirect.com/science/article/pii/S0144861718310002)

  350. 350
    Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds

    Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)

  351. 351
    Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications

    Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.

    (https://doi.org/10.1016/B978-0-08-101022-8.00001-6)

  352. 352
    Solution electrospinning of nanofibers

    Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.

    (http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0)

  353. 353
    Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación

    CHÓLIZ SANZ, SOFÍA. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.

    (https://riunet.upv.es/handle/10251/89154)

  354. 354
    Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine

    Kiliç, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.

    (https://link.springer.com/article/10.1007/s10856-017-6013-5)

  355. 355
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers

    Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.

    (https://doi.org/10.1016/j.jfoodeng.2017.11.013)

  356. 356
    Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

    Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.

    (https://link.springer.com/article/10.1007/s41779-017-0149-0)

  357. 357
    Raising Nanofiber Output- The Progress, Mechanisms, Challenges, and Reasons for the Pursuit

    Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)

  358. 358
    Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation

    Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)

  359. 359
    Anti-corrosion coating for magnesium alloys- electrospun superhydrophobic polystyrene/SiO2 composite fibers

    Polat, N. H., Kap, Ö., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)

  360. 360
    A comparative study of electrospinning process for two different collectors- The effect of the collecting method on the nanofiber diameters

    ÇAVDAR, F. Y., & UĞUZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.

    (https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)

  361. 361
    A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior

    Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Daşan, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.

    (https://www.sciencedirect.com/science/article/pii/S0141813018301107)

  362. 362
    A review of low density porous materials used in laser plasma experiments

    Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.

    (https://aip.scitation.org/doi/full/10.1063/1.5009689)

  363. 363
    Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption

    Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00112)

  364. 364
    Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

    Deliormanlı, A. M., & Konyalı, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.

    (https://link.springer.com/article/10.1007/s41779-018-0229-9)

  365. 365
    Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes

    Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)

  366. 366
    Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines

    Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.

    (https://www.sciencedirect.com/science/article/pii/S1742706118305932)

  367. 367
    Development and characterization of methylprednisolone loaded delayed release nanofibers

    Turanlı, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.

    (https://www.sciencedirect.com/science/article/pii/S1773224718307780)

  368. 368
    Development of Carbon Nanofiber Yarns by Electrospinning

    Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)

  369. 369
    Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning

    Storti, E., Jankovský, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)

  370. 370
    Effect of polyvinyl alcohol (PVA)/chitosan (CS) blend ratios on morphological, optical and thermal properties of electrospun nanofibers

    AÇIK, G., Kamaci, M., ÖZATA, B., & CANSOY, C. E. Ö. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)

  371. 371
    Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)

  372. 372
    Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles

    Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)

  373. 373
    Electrospinning for membrane fabrication- Strategies and applications

    Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0

    (https://www.researchgate.net/publication/313668516_Electrospinning_for_Membrane_Fabrication_Strategies_and_Applications)

  374. 374
    Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds

    Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.

    (https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)

  375. 375
    Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives

    Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.

    (https://www.sciencedirect.com/science/article/pii/S0003267018302058)

  376. 376
    Encapsulation of indocyanine green in poly(lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics

    Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)

  377. 377
    Fabrication of electrospun poly(ethylene terephthalate) scaffolds: Characterization and their potential on cell proliferation in vitro

    DÜZYER, Ş. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKSTİL VE KONFEKSİYON, 27(4), 334-341.

    (https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)

  378. 378
    Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles

    Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.

    (https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)

  379. 379
    Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering

    Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)

  380. 380
    Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation

    Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03584)

  381. 381
    Interfacial Polymerization with Electrosprayed Microdroplets- Toward Controllable and Ultrathin Polyamide Membranes

    Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.

    (https://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00566)

  382. 382
    Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers

    Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)

  383. 383
    Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications

    Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.

    (https://www.sciencedirect.com/science/article/pii/S0144861718303382)

  384. 384
    Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection

    Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00453)

  385. 385
    Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma- alignment, antibacterial activity, and biocompatibility

    Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.

    (https://link.springer.com/article/10.1007/s00289-018-2409-8)

  386. 386
    Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Microcrystalline Cellulose

    Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.

    (https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3659_Gaitan_Morphological_Mechanical_Electrospun_Cellulose)

  387. 387
    Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis

    Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)

  388. 388
    PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning

    Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.

    (https://www.mdpi.com/2079-6439/6/2/37)

  389. 389
    Patent - US20180142379A1 - Electrospinning of fluoropolymers

    Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.

    (https://patents.google.com/patent/US20180142379A1/en)

  390. 390
    Patent - US20180215882A1 - Swellable and insoluble nanofibers and use thereof in the treatment of essentially aqueous effluents

    Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.

    (https://patents.google.com/patent/US20180215882A1/en)

  391. 391
    Patent - US20180301690A1 - Metal oxide nanofiber electrode and method

    Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)

  392. 392
    Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers

    Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.

    (https://www.nature.com/articles/s41598-018-20714-5)

  393. 393
    Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkol'ün fotokatalitik bozunması

    Köysüren, H. N., & Köysüren, Ö. (2018). Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).

    (https://dergipark.org.tr/tr/download/article-file/601784)

  394. 394
    Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst

    Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.

    (https://www.sciencedirect.com/science/article/pii/S0021979718309639)

  395. 395
    Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats

    Konyalı, R., & Deliormanlı, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.

    (https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)

  396. 396
    Salinomycin-loaded Nanofibers for Glioblastoma Therapy

    Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.

    (https://www.nature.com/articles/s41598-018-27733-2)

  397. 397
    Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu

    ALMA, M. H., YAZICI, M., YILDIRIM, B., & TİYEK, İ. (2017). Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.

    (https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)

  398. 398
    Superhydrophobic EVA copolymer fibers- the impact of chemical composition on wettability and photophysical properties

    Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.

    (https://link.springer.com/article/10.1007/s00396-018-4395-7)

  399. 399
    The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

    Tiyek, İ., Yazıcı, M., Alma, M. H., & Karataş, Ş. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.

    (https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)

  400. 400
    The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility

    Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

    (https://www.sciencedirect.com/science/article/pii/S0308814618308719)

  401. 401
    Thermal Conductivity of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)

  402. 402
    Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application

    Li, W. (2018). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.

    (https://mspace.lib.umanitoba.ca/handle/1993/33473)

  403. 403
    Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem

    Růžek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.

    (https://dspace.tul.cz/handle/15240/32257)

  404. 404
    Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules

    Maıhemutı, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)

  405. 405
    Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters

    Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.

    (https://www.sciencedirect.com/science/article/pii/S0032386118309455)

  406. 406
    A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions

    Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.

    (https://www.sciencedirect.com/science/article/pii/S0169433219308554)

  407. 407
    Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides

    Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.

    (https://pubs.acs.org/doi/abs/10.1021/acsomega.8b03137)

  408. 408
    Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes

    Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.

    (https://www.mdpi.com/2079-4991/9/9/1215)

  409. 409
    Bioinspired scaffold induced regeneration of neural tissue

    Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.

    (https://www.sciencedirect.com/science/article/pii/S0014305718324765)

  410. 410
    Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture

    Türker, E., Yildiz, Ü. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.

    (https://www.sciencedirect.com/science/article/pii/S0141813019350019)

  411. 411
    Development of TiO2 nanofibers based semiconducting humidity sensor- adsorption kinetics and DFT computations

    Farzaneh, A., Esrafili, M. D., & Mermer, Ö. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.

    (https://www.sciencedirect.com/science/article/pii/S0254058419307801)

  412. 412
    Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering

    Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.

    (https://www.sciencedirect.com/science/article/pii/S0928493118326286)

  413. 413
    Dual effective core-shell electrospun scaffolds- Promoting osteoblast maturation and reducing bacteria activity

    De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309032)

  414. 414
    Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization

    Tort, S., Demiröz, F. T., Yıldız, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.

    (https://link.springer.com/article/10.1007/s12247-019-09383-7)

  415. 415
    Electron Microscopy Investigation of CeO2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation

    Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.

    (https://doi.org/10.1017/S1431927619011619)

  416. 416
    Electrospinning and Electrospun Nanofibers- Methods, Materials, and Applications

    Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.

    (https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00593)

  417. 417
    Electrospinning- The Setup and Procedure

    Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000029)

  418. 418
    Electrospray Deposition of Discrete Nanoparticles- Studies on Pulsed-Field Electrospray and Analytical Applications

    Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.

    (https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)

  419. 419
    Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds

    Fernández, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.

    (https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00108)

  420. 420
    Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material

    Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.

    (https://www.sciencedirect.com/science/article/pii/S0928493118329187)

  421. 421
    Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4 /MWCNT ceramic composite

    Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.

    (http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)

  422. 422
    Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

    Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)

  423. 423
    Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries

    Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)

  424. 424
    Hydrogen production from sodium borohydride originated compounds- Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity

    Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)

  425. 425
    Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production

    Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)

  426. 426
    Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration

    Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)

  427. 427
    Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

    Gürsoy, M., Özcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.47768)

  428. 428
    Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane

    Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)

  429. 429
    Latest Progress in Electrospun Nanofibers for Wound Healing Applications

    Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00637)

  430. 430
    Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection

    Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00076)

  431. 431
    Needle-less Electrospinning

    Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000078)

  432. 432
    Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings

    Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.

    (https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)

  433. 433
    On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats

    Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.

    (https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)

  434. 434
    Patent - US10197498B2 - Compositions and methods for measurement of analytes

    Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.

    (https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)

  435. 435
    Patent - US10211449B2 - Battery electrode and method

    Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)

  436. 436
    Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose

    Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.

    (https://www.sciencedirect.com/science/article/pii/S0928493118327024)

  437. 437
    Polypropylene microfibers via solution electrospinning under ambient conditions

    Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48199)

  438. 438
    Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

    Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.

    (https://link.springer.com/article/10.1007/s41779-019-00363-1)

  439. 439
    Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO

    Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.

    (https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)

  440. 440
    Proses parametreleri ve çözelti özelliklerinin koaksiyal elektropüskürtme yönetemi ile elde edilen nanopartiküllerin morfolojik özellikleri üzerine etkisi

    Mete, A. A., & Atay, E. PROSES PARAMETRELERİ VE ÇÖZELTİ ÖZELLİKLERİNİN KOAKSİYAL ELEKTROPÜSKÜRTME YÖNTEMİ İLE ELDE EDİLEN NANOPARTİKÜLLERİN MORFOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA, 44(3), 534-551.

    (https://dergipark.org.tr/tr/pub/gida/article/531149)

  441. 441
    Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends

    Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48294)

  442. 442
    Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior

    Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.

    (https://www.sciencedirect.com/science/article/pii/S0169433219311018)

  443. 443
    Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning

    Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)

  444. 444
    Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability

    Işik, C., Arabaci, G., Doğaç, Y. I., Deveci, İ., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309317)

  445. 445
    Synthesis and mechanical properties of para‐aramid nanofibers

    Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)

  446. 446
    Nerve guidance conduit application of magnesium alloys

    Özkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)

  447. 447
    Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization- Physical, chemical and biological properties

    Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.

    (https://www.sciencedirect.com/science/article/pii/S0169433219305203)

  448. 448
    Electrospun nanofibers for biomedical applications
  449. 449
    Lamination of Separators to Electrodes using Electrospinning

    Springer Bernhard Christian, Frankenberger Martin, Pettinger Karl-Heinz. PLoS One; San Francisco Vol. 15, Iss. 1, (Jan 2020): e0227903. DOI:10.1371/journal.pone.0227903

    https://search.proquest.com/openview/a108579a31b0ed99b86e3d8f49ae9148/1?pq-origsite=gscholar&cbl=1436336

  450. 450
    Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment

    Claudia Heuera, Enrico Stortia, Thomas Graule, Christos G.Aneziris.

    EMPA, Eidgenössische Materialprüfungs- und Forschungsanstalt, Laboratory for High Performance Ceramics, Überlandstr. 129, 8600, Dübendorf, Switzerland.

    https://www.sciencedirect.com/science/article/pii/S0272884220302601?via%3Dihub

  451. 451
    Measurement of impact characteristics in a string using electrospun PVDF nanofibers strain sensors

    Rahul KumarSingh, Sun WohLye, JianminMiao.

    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

    https://www.sciencedirect.com/science/article/abs/pii/S0924424719317200?via%3Dihub

  452. 452
    Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone

    Silvia Grande, Francesco Tampieri, Anton Nikiforov, Agata Giardina, Antonio Barbon, Pieter Cools, Rino Morent, Cristina Paradisi, Ester Marotta and Nathalie De Geyter.
    Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium/Department of Chemical Sciences, Università degli Studi di Padova, Padua, Italy.

    https://www.frontiersin.org/articles/10.3389/fchem.2019.00344/full

  453. 453
    Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties

    Silvia Grande,Joachim Van Guyse,  Anton Y. Nikiforov,  Iuliia Onyshchenko,  Mahtab Asadian, Rino Morent, Richard Hoogenboom and Nathalie De Geyte.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48914

  454. 454
    Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities

    Tugba Eren Boncu, Nurten Ozdemir and Aylin Uskudar Guclu.

    https://www.tandfonline.com/doi/full/10.1080/03639045.2019.1706550

  455. 455
    Halochromic composite nanofibrous mat for wound healing monitoring
    Ayben Pakolpakçıl, Bilgen Osman, Elif Tümay Özer, Yasemin Şahan, Behçet Becerir, Gökhan Göktalay and Esra Karaca
    2020 IOP Publishing Ltd
    Materials Research Express, Volume 6, Number 12
     
  456. 456
    Synthesis and morphology optimization of electrospun SiBNC nanofibers
    Kamal Asadi-Pakdel, Rouhollah Mehdinavaz Aghdama, Mehdi Shahedi Asl and Mohammad Ali Faghihi Sani.