PUBLICATIONS

INOVENSO DEVICES ENABLED HUNDREDS OF OUTSTANDING RESEARCHERS TO ADVANCE NANO(FIBER) SCIENCE

Thanks to our customers and their valuable works with Inovenso Electrospinning Devices. Below is the some of the articles published with using our equipments.

  1. 1
    Preparation And Characterization Of Polyvinyl Borate/Polyvinyl Alcohol (PVB/PVA) Blend Nanofibers

    Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035

    (http://onlinelibrary.wiley.com/doi/10.1002/app.35035/full)

  2. 2
    The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

    Öteyaka, M. O., Özel, E., Yıldırım, M. M., Aslan, M. H., Oral, A. Y., Özer, M., & Çaglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116

    (https://aip.scitation.org/doi/abs/10.1063/1.3663116)

  3. 3
    Initiated Chemical Vapor Deposition Of Ph Responsive Poly(2-Diisopropylamino)Ethyl Methacrylate Thin Films

    Mustafa Karaman, Nihat Çabuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083

    (http://www.sciencedirect.com/science/article/pii/S0040609012008140)

  4. 4
    Sıcak Filament Destekli Kimyasal Buhar Biriktirme Yöntemi İle Süper Su İtici Nano Kaplama Sentezi

    Çabuk, N. (2012). Sıcak filament destekli kimyasal buhar biriktirme yöntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)

  5. 5
    Preparation And Characterization Of Polyvinyl Alcohol/Carbon Nanotube (PVA/CNT) Conductive Nanofibers

    Köysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068

    (http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)

  6. 6
    The development and design of fluorescent sensors for continuous in vivo glucose monitoring

    Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.

    (http://hdl.handle.net/2047/d20004844)

  7. 7
    Effects of different sterilization methods on polyester surfaces

    Duzyer, Sebnem & Koral Koç, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.

    (https://www.researchgate.net/publication/272672175_Effects_of_different_sterilization_methods_on_polyester_surfaces)

  8. 8
    Polymer Nanofibers: Building Blocks for Nanotechnology

    Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.

    (https://books.google.com.tr/books?id=BnQoDwAAQBAJ&hl=tr)

  9. 9
    Affecting Parameters On Electrospinning Process And Characterization Of Electrospun Gelatin Nanofibers

    Nagihan Okutan, Pınar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

    (http://www.sciencedirect.com/science/article/pii/S0268005X13004062)

  10. 10
    Design Of A Novel Nozzle Prototype For Increased Productivity And Improved Coating Quality During Electrospinning

    UCAR, Nuray; UCAR, Mehmet; KIZILDAĞ, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.

    (https://www.researchgate.net/publication/293543273_DESIGN_OF_A_NOVEL_NOZZLE_PROTOTYPE_FOR_INCREASE_PRODUCTIVITY_AND_IMPROVED_COATING_QUALITY_DURING_ELECTROSPINNING)

  11. 11
    Electrospun Polyvinyl Borate/Poly(Methyl Methacrylate) (PVB/PMMA) Blend Nanofibers

    Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Dinç, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.

    (http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)

  12. 12
    Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review

    Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)

  13. 13
    Template Assisted Synthesis Of Photocatalytic Titanium Dioxide Nanotubes By Hot Filament Chemical Vapor Deposition Method

    Mustafa Karaman, Fatma Sarıipek, Özcan Köysüren, H. Bekir Yıldız, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.

    (http://www.sciencedirect.com/science/article/pii/S016943321301369X)

  14. 14
    UV Illumination Effects On Electrical Characteristics Of Metal–Polymer–Semiconductor Diodes Fabricated With New Poly(Propylene Glycol)-B-Polystyrene Block Copolymer

    Gökçen, M. Yıldırım, A. Demir, A. Allı, S. Allı, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.

    (http://www.sciencedirect.com/science/article/pii/S1359836813005519)

  15. 15
    Experimental Study on Relationship of Applied Power And Feeding Rate on Production of Polyurethane Nanofibre

    Oteyaka, M., Ozel, E., & Yıldırım, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gazı Unıversıty Journal Of Scıence, 26(4), 611-618.

    (http://gujs.gazi.edu.tr/article/view/1060000855)

  16. 16
    Electrospun Fibers For Vaginal Anti-HIV Drug Delivery

    Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.

    (http://www.sciencedirect.com/science/article/pii/S0166354213002829)

  17. 17
    Polivinil Borat Sentezin ; Elektrospin Yöntemiyle Nanofiber Hazırlanması Ve Karakterizasyonu

    Dinç, H. (2013). Polivinil borat sentezin; elektrospin yöntemiyle nanofiber hazırlanması ve karakterizasyonu (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)

  18. 18
    Commercial Viability Analysis of Lignin Based Carbon Fibre

    Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.

    (https://core.ac.uk/download/pdf/56378549.pdf)

  19. 19
    Electrospun Antibacterial Nanofibers: Production, Activity, And In Vivo Applications

    Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797

    (http://onlinelibrary.wiley.com/doi/10.1002/app.40797/full)

  20. 20
    Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions

    Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g

    (https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)

  21. 21
    Utilization Of Electrospun Nanofibers Containing Gelatin Or Gelatin-cellulose Acetate For Preventing Syneresis In Tomato Ketchup

    Hendessi, S. (2014). Jelatın Veya Jelatın-selüloz Asetat İçeren Nanoliflerin Domates Ketçaplarında Sineresisi Önleyici Olarak Kullanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    (http://hdl.handle.net/11527/2193)

  22. 22
    Thermal Conductivity Of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)

  23. 23
    Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

    Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.

    (http://www.waset.org/publications/10001167)

  24. 24
    Preparation And In Vitro Characterization Of Electrospun 45S5 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.

    (http://www.sciencedirect.com/science/article/pii/S0272884214013236)

  25. 25
    Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

    Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.

    (http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)

  26. 26
    Cellulose Acetate–Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability

    Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.

    (http://onlinelibrary.wiley.com/doi/10.1002/marc.201500037/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage=)

  27. 27
    Electrospinning Of Nanofibrous Polycaprolactone (PCL) And Collagen-Blended Polycaprolactone For Wound Dressing And Tissue Engineering

    Zeybek, B., Duman, M., & Ürkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.

    (http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)

  28. 28
    Phosphine-Functionalized Electrospun Poly(Vinyl Alcohol)/Silica Nanofibers As Highly Effective Adsorbent For Removal Of Aqueous Manganese And Nickel Ions

    Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.

    (http://www.sciencedirect.com/science/article/pii/S092777571530100X)

  29. 29
    Free-Standing Ni–Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

    Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.

    (http://www.sciencedirect.com/science/article/pii/S2211285515003742)

  30. 30
    Coaxial Electrospinning Of WO3 Nanotubes Functionalized With Bio-İnspired Pd Catalysts And Their Superior Hydrogen Sensing Performance

    Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.

    (http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)

  31. 31
    Electrospun Cerium And Gallium-Containing Silicate Based 13-93 Bioactive Glass Fibers For Biomedical Applications

    Aylin M. Deliormanlı, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.

    (http://www.sciencedirect.com/science/article/pii/S0272884215017241)

  32. 32
    Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide For Antibacterial Wound Dressing

    El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.

    (http://link.springer.com/article/10.1007/s12010-015-1962-y)

  33. 33
    Preparation, In Vitro Mineralization And Osteoblast Cell Response Of Electrospun 13–93 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.

    (http://www.sciencedirect.com/science/article/pii/S0928493115300394)

  34. 34
    Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions

    Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)

  35. 35
    Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

    Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.

    (https://books.google.com.tr/books?hl=tr&lr=&id=oGa2CgAAQBAJ&oi=fnd&pg=PA281&dq=inovenso&ots=D8gIXZpcRB&sig=V_3qD1gM2EfbBpWrKSkxMgXhGGA&redir_esc=y#v=onepage&q=inovenso&f=false)

  36. 36
    Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.

    (http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10198457&fileId=S205985211600164X)

  37. 37
    Alternative Solvent Systems For Polycaprolactone Nanowebs Via Electrospinning

    Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032

    (http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)

  38. 38
    Controlled Release Of A Hydrophilic Drug From Coaxially Electrospun Polycaprolactone Nanofibers

    Zahida Sultanova, Gizem Kaleli, Gözde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.

    (http://www.sciencedirect.com/science/article/pii/S0378517316302320)

  39. 39
    Recent Developments In Micro- And Nanofabrication Techniques For The Preparation Of Amorphous Pharmaceutical Dosage Forms

    Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.

    (http://www.sciencedirect.com/science/article/pii/S0169409X16300059)

  40. 40
    Fabrication Of Electrospun Nanofiber Catalysts And Ammonia Borane Hydrogen Release Efficiency

    Bilge Coşkuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.

    (http://www.sciencedirect.com/science/article/pii/S0360319915318632)

  41. 41
    Enhancement Of Mechanical And Physical Properties Of Electrospun PAN Nanofiber Membranes Using PVDF Particles

    Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)

  42. 42
    Proposal Of A Framework For Scale-Up Life Cycle Inventory: A Case Of Nanofibers For Lithium Iron Phosphate Cathode Applications

    Simon, B., Bachtin, K., Kiliç, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].

    (http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)

  43. 43
    Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation

    Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)

  44. 44
    On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength

    Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h

    (https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)

  45. 45
    Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Gönen, S. Ö., Erol Taygun, M., Aktürk, A., & Küçükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065

    (https://www.sciencedirect.com/science/article/pii/S0928493116304982)

  46. 46
    Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing

    Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011

    (https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)

  47. 47
    Fabrication of protein scaffold by electrospin coating for artificial tissue

    Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)

  48. 48
    Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing

    Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0

    (https://link.springer.com/article/10.1007/s11095-016-1987-0)

  49. 49
    Preparation and characterization of electrospun nanofibers containing glutamine

    Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028

    (https://www.sciencedirect.com/science/article/pii/S0144861716308177)

  50. 50
    Yapılı Poli(Akrilonitril-Vinil Asetat)/Grafen Oksit Yapıların Karakterizasyonu

    TİYEK, İ , YAZICI, M , ALMA, M , DÖNMEZ, U , YILDIRIM, B , SALAN, T , URUŞ, S , KARATAŞ, Ş , KARTERİ, İ . (2016). Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.

    (https://dergipark.org.tr/teksmuh/issue/24718/261437)

  51. 51
    Durable adhesives based on electrospun poly(vinylidene fluoride) fibers

    Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44393)

  52. 52
    Electrospinning—Commercial Applications, Challenges and Opportunities

    Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11

    (https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)

  53. 53
    US20160274030A1 Compositions and methods for measurement of analytes

    Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.

    (https://patents.google.com/patent/US20160274030A1/en)

  54. 54
    Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVECİ [5]. 358 412. Uludağ University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230

    (https://doi.org/10.17482/uujfe.04230)

  55. 55
    Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications

    Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9

    (https://link.springer.com/article/10.1007/s10853-016-0537-9)

  56. 56
    Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications

    Deliormanlı, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078

    (https://www.sciencedirect.com/science/article/pii/S0272884216320697)

  57. 57
    Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications

    Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)

  58. 58
    A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability

    İspirli Doğaç, Y., Deveci, İ., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120

    (https://www.sciencedirect.com/science/article/pii/S0141813016319572)

  59. 59
    Crystallisation of amorphous fenofibrate and potential of the polymer blend electrospun matrices to stabilise in its amorphous form

    Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/

    (https://ueaeprints.uea.ac.uk/61721/)

  60. 60
    Smartphone-based detection of dyes in water for environmental sustainability

    Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d

    (https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)

  61. 61
    Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications

    Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177

    (http://dx.doi.org/10.5772/64177)

  62. 62
    Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration

    Öztatlı, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663

    (https://doi.org/10.1557/adv.2016.663)

  63. 63
    Drug Delivery and Development of Anti-HIV Microbicides

    das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559

    (https://doi.org/10.1201/b17559)

  64. 64
    Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens

    Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon

    Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063

    DOI: 10.1021/acs.iecr.6b04256

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b04256)

  65. 65
    Dry-adhesives based on hierarchical poly (methyl methacrylate) electrospun fibers

    Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6

    (https://link.springer.com/article/10.1007/s00339-017-0816-6)

  66. 66
    Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

    Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911

    (https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)

  67. 67
    Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production

    Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)

  68. 68
    Thermoresponsive electrospun membrane with enhanced wettability

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e

    (https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)

  69. 69
    Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application

    Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)

  70. 70
    Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications

    Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  71. 71
    A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance

    Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  72. 72
    Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures

    Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6

    (https://link.springer.com/article/10.1007/s10853-017-1191-6)

  73. 73
    Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

    Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1

    (https://link.springer.com/article/10.1007/s10853-017-1240-1)

  74. 74
    Effects of pre-and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018

    (https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)

  75. 75
    Filtration of juices by using electrospun pan membrane

    ALTAY FİLİZ,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/İSPANYA, 17 Mayıs 2017

    (https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)

  76. 76
    Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials

    Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

    (https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)

  77. 77
    Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

    KARAMAN, M., GÜRSOY, M., AYKÜL, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec

    (https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)

  78. 78
    Mechanical properties and fatigue analysis on poly(ε- caprolactone)-polydopamine-coated nanofibers and poly(ε- caprolactone)-carbon nanotube composite scaffolds

    Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013

    (https://www.sciencedirect.com/science/article/pii/S0014305717302999)

  79. 79
    Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing

    Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027

    (https://www.sciencedirect.com/science/article/pii/S0378517317306269)

  80. 80
    Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells

    Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d

    (https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)

  81. 81
    Thermoresponsive Cellulose Acetate−Poly(N‐isopropylacrylamide) Core−Shell Fibers for Controlled Capture and Release of Moisture

    Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b07559 )

  82. 82
    Microfibrous scaffolds enhance endothelial differentiation and organization of induced pluripotent stem cells

    Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y

    (https://link.springer.com/article/10.1007/s12195-017-0502-y)

  83. 83
    Atmospheric pressure plasma jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning

    Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b08439)

  84. 84
    Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering

    Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046

    (https://www.sciencedirect.com/science/article/pii/S0144861717310718)

  85. 85
    Thermoresponsive electrospun fibers for water harvesting applications

    Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113

    (https://www.sciencedirect.com/science/article/pii/S0169433217330593)

  86. 86
    Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions

    Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092

    (https://www.sciencedirect.com/science/article/pii/S0144861718310002)

  87. 87
    Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds

    Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)

  88. 88
    Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications

    Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.

    (https://doi.org/10.1016/B978-0-08-101022-8.00001-6)

  89. 89
    Solution electrospinning of nanofibers

    Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.

    (http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0)

  90. 90
    Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación

    CHÓLIZ SANZ, SOFÍA. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.

    (https://riunet.upv.es/handle/10251/89154)

  91. 91
    Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine

    Kiliç, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.

    (https://link.springer.com/article/10.1007/s10856-017-6013-5)

  92. 92
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers

    Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.

    (https://doi.org/10.1016/j.jfoodeng.2017.11.013)

  93. 93
    Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

    Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.

    (https://link.springer.com/article/10.1007/s41779-017-0149-0)

  94. 94
    Raising Nanofiber Output- The Progress, Mechanisms, Challenges, and Reasons for the Pursuit

    Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)

  95. 95
    Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation

    Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)

  96. 96
    Anti-corrosion coating for magnesium alloys- electrospun superhydrophobic polystyrene/SiO2 composite fibers

    Polat, N. H., Kap, Ö., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)

  97. 97
    A comparative study of electrospinning process for two different collectors- The effect of the collecting method on the nanofiber diameters

    ÇAVDAR, F. Y., & UĞUZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.

    (https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)

  98. 98
    A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior

    Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Daşan, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.

    (https://www.sciencedirect.com/science/article/pii/S0141813018301107)

  99. 99
    A review of low density porous materials used in laser plasma experiments

    Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.

    (https://aip.scitation.org/doi/full/10.1063/1.5009689)

  100. 100
    Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption

    Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00112)

  101. 101
    Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

    Deliormanlı, A. M., & Konyalı, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.

    (https://link.springer.com/article/10.1007/s41779-018-0229-9)

  102. 102
    Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes

    Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)

  103. 103
    Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines

    Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.

    (https://www.sciencedirect.com/science/article/pii/S1742706118305932)

  104. 104
    Development and characterization of methylprednisolone loaded delayed release nanofibers

    Turanlı, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.

    (https://www.sciencedirect.com/science/article/pii/S1773224718307780)

  105. 105
    Development of Carbon Nanofiber Yarns by Electrospinning

    Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)

  106. 106
    Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning

    Storti, E., Jankovský, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)

  107. 107
    Effect of polyvinyl alcohol (PVA)/chitosan (CS) blend ratios on morphological, optical and thermal properties of electrospun nanofibers

    AÇIK, G., Kamaci, M., ÖZATA, B., & CANSOY, C. E. Ö. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)

  108. 108
    Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)

  109. 109
    Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles

    Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)

  110. 110
    Electrospinning for membrane fabrication- Strategies and applications

    Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0

    (https://www.researchgate.net/publication/313668516_Electrospinning_for_Membrane_Fabrication_Strategies_and_Applications)

  111. 111
    Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds

    Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.

    (https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)

  112. 112
    Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives

    Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.

    (https://www.sciencedirect.com/science/article/pii/S0003267018302058)

  113. 113
    Encapsulation of indocyanine green in poly(lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics

    Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)

  114. 114
    Fabrication of electrospun poly(ethylene terephthalate) scaffolds: Characterization and their potential on cell proliferation in vitro

    DÜZYER, Ş. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKSTİL VE KONFEKSİYON, 27(4), 334-341.

    (https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)

  115. 115
    Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles

    Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.

    (https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)

  116. 116
    Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering

    Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)

  117. 117
    Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation

    Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03584)

  118. 118
    Interfacial Polymerization with Electrosprayed Microdroplets- Toward Controllable and Ultrathin Polyamide Membranes

    Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.

    (https://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00566)

  119. 119
    Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers

    Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)

  120. 120
    Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications

    Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.

    (https://www.sciencedirect.com/science/article/pii/S0144861718303382)

  121. 121
    Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection

    Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00453)

  122. 122
    Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma- alignment, antibacterial activity, and biocompatibility

    Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.

    (https://link.springer.com/article/10.1007/s00289-018-2409-8)

  123. 123
    Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Microcrystalline Cellulose

    Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.

    (https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3659_Gaitan_Morphological_Mechanical_Electrospun_Cellulose)

  124. 124
    Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis

    Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)

  125. 125
    PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning

    Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.

    (https://www.mdpi.com/2079-6439/6/2/37)

  126. 126
    Patent - US20180142379A1 - Electrospinning of fluoropolymers

    Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.

    (https://patents.google.com/patent/US20180142379A1/en)

  127. 127
    Patent - US20180215882A1 - Swellable and insoluble nanofibers and use thereof in the treatment of essentially aqueous effluents

    Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.

    (https://patents.google.com/patent/US20180215882A1/en)

  128. 128
    Patent - US20180301690A1 - Metal oxide nanofiber electrode and method

    Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)

  129. 129
    Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers

    Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.

    (https://www.nature.com/articles/s41598-018-20714-5)

  130. 130
    Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkol'ün fotokatalitik bozunması

    Köysüren, H. N., & Köysüren, Ö. (2018). Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).

    (https://dergipark.org.tr/tr/download/article-file/601784)

  131. 131
    Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst

    Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.

    (https://www.sciencedirect.com/science/article/pii/S0021979718309639)

  132. 132
    Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats

    Konyalı, R., & Deliormanlı, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.

    (https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)

  133. 133
    Salinomycin-loaded Nanofibers for Glioblastoma Therapy

    Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.

    (https://www.nature.com/articles/s41598-018-27733-2)

  134. 134
    Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu

    ALMA, M. H., YAZICI, M., YILDIRIM, B., & TİYEK, İ. (2017). Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.

    (https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)

  135. 135
    Superhydrophobic EVA copolymer fibers- the impact of chemical composition on wettability and photophysical properties

    Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.

    (https://link.springer.com/article/10.1007/s00396-018-4395-7)

  136. 136
    The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

    Tiyek, İ., Yazıcı, M., Alma, M. H., & Karataş, Ş. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.

    (https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)

  137. 137
    The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility

    Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

    (https://www.sciencedirect.com/science/article/pii/S0308814618308719)

  138. 138
    Thermal Conductivity of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)

  139. 139
    Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application

    Li, W. (2018). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.

    (https://mspace.lib.umanitoba.ca/handle/1993/33473)

  140. 140
    Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem

    Růžek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.

    (https://dspace.tul.cz/handle/15240/32257)

  141. 141
    Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules

    Maıhemutı, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)

  142. 142
    Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters

    Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.

    (https://www.sciencedirect.com/science/article/pii/S0032386118309455)

  143. 143
    A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions

    Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.

    (https://www.sciencedirect.com/science/article/pii/S0169433219308554)

  144. 144
    Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides

    Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.

    (https://pubs.acs.org/doi/abs/10.1021/acsomega.8b03137)

  145. 145
    Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes

    Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.

    (https://www.mdpi.com/2079-4991/9/9/1215)

  146. 146
    Bioinspired scaffold induced regeneration of neural tissue

    Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.

    (https://www.sciencedirect.com/science/article/pii/S0014305718324765)

  147. 147
    Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture

    Türker, E., Yildiz, Ü. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.

    (https://www.sciencedirect.com/science/article/pii/S0141813019350019)

  148. 148
    Development of TiO2 nanofibers based semiconducting humidity sensor- adsorption kinetics and DFT computations

    Farzaneh, A., Esrafili, M. D., & Mermer, Ö. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.

    (https://www.sciencedirect.com/science/article/pii/S0254058419307801)

  149. 149
    Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering

    Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.

    (https://www.sciencedirect.com/science/article/pii/S0928493118326286)

  150. 150
    Dual effective core-shell electrospun scaffolds- Promoting osteoblast maturation and reducing bacteria activity

    De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309032)

  151. 151
    Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization

    Tort, S., Demiröz, F. T., Yıldız, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.

    (https://link.springer.com/article/10.1007/s12247-019-09383-7)

  152. 152
    Electron Microscopy Investigation of CeO2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation

    Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.

    (https://doi.org/10.1017/S1431927619011619)

  153. 153
    Electrospinning and Electrospun Nanofibers- Methods, Materials, and Applications

    Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.

    (https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00593)

  154. 154
    Electrospinning- The Setup and Procedure

    Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000029)

  155. 155
    Electrospray Deposition of Discrete Nanoparticles- Studies on Pulsed-Field Electrospray and Analytical Applications

    Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.

    (https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)

  156. 156
    Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds

    Fernández, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.

    (https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00108)

  157. 157
    Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material

    Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.

    (https://www.sciencedirect.com/science/article/pii/S0928493118329187)

  158. 158
    Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4 /MWCNT ceramic composite

    Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.

    (http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)

  159. 159
    Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

    Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)

  160. 160
    Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries

    Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)

  161. 161
    Hydrogen production from sodium borohydride originated compounds- Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity

    Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)

  162. 162
    Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production

    Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)

  163. 163
    Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration

    Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)

  164. 164
    Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

    Gürsoy, M., Özcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.47768)

  165. 165
    Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane

    Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)

  166. 166
    Latest Progress in Electrospun Nanofibers for Wound Healing Applications

    Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00637)

  167. 167
    Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection

    Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00076)

  168. 168
    Needle-less Electrospinning

    Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000078)

  169. 169
    Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings

    Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.

    (https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)

  170. 170
    On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats

    Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.

    (https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)

  171. 171
    Patent - US10197498B2 - Compositions and methods for measurement of analytes

    Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.

    (https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)

  172. 172
    Patent - US10211449B2 - Battery electrode and method

    Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)

  173. 173
    Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose

    Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.

    (https://www.sciencedirect.com/science/article/pii/S0928493118327024)

  174. 174
    Polypropylene microfibers via solution electrospinning under ambient conditions

    Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48199)

  175. 175
    Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

    Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.

    (https://link.springer.com/article/10.1007/s41779-019-00363-1)

  176. 176
    Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO

    Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.

    (https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)

  177. 177
    Proses parametreleri ve çözelti özelliklerinin koaksiyal elektropüskürtme yönetemi ile elde edilen nanopartiküllerin morfolojik özellikleri üzerine etkisi

    Mete, A. A., & Atay, E. PROSES PARAMETRELERİ VE ÇÖZELTİ ÖZELLİKLERİNİN KOAKSİYAL ELEKTROPÜSKÜRTME YÖNTEMİ İLE ELDE EDİLEN NANOPARTİKÜLLERİN MORFOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA, 44(3), 534-551.

    (https://dergipark.org.tr/tr/pub/gida/article/531149)

  178. 178
    Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends

    Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48294)

  179. 179
    Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior

    Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.

    (https://www.sciencedirect.com/science/article/pii/S0169433219311018)

  180. 180
    Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning

    Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)

  181. 181
    Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability

    Işik, C., Arabaci, G., Doğaç, Y. I., Deveci, İ., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309317)

  182. 182
    Synthesis and mechanical properties of para‐aramid nanofibers

    Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)

  183. 183
    Nerve guidance conduit application of magnesium alloys

    Özkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)

  184. 184
    Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization- Physical, chemical and biological properties

    Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.

    (https://www.sciencedirect.com/science/article/pii/S0169433219305203)