PUBLICATIONS

INOVENSO DEVICES ENABLED HUNDREDS OF OUTSTANDING RESEARCHERS TO ADVANCE NANO(FIBER) SCIENCE

We thank our customers and their valuable works with Inovenso Electrospinning Devices. Below are some of the articles published by users of our equipment:

  1. 1
    POLYMER-CLAY NANOFIBROUS WOUND DRESSING MATERIALS CONTAINING DIFFERENT BORON COMPOUND

    Sara Asghari Dilmani , Sena Koç , Tülay Selin Erkut , Menemşe Gümüşderelioğlu

    https://www.sciencedirect.com/science/article/abs/pii/S0946672X24000282

  2. 2
    A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair

     Simeon C. Daeschler1, Katelyn J.W. So, Konstantin Feinberg, Marina Manoraj, Jenny Cheung, Jennifer Zhang

    Kaveh Mirmoeini, J. Paul Santerre, Tessa Gordon1, Gregory H. Borschel 

    A functional tacrolimus-releasing nerve wrap for enhancing nerve regeneration following surgical nerve repair

  3. 3
    Electrospun hesperidin nanofibers induce a cytoprotective effect on sodium-fluoride induced oxidative stress in vitro

    Mehmet Birer, Adnan Altuğ Kara, Begum Yurdakok-Dikmen, Recep Uyar, Gizem Aralan, Yağmur Turgut Birer, Ayhan Filazi, Füsun Acartürk

    https://www.sciencedirect.com/science/article/abs/pii/S177322472400056X

  4. 4
    Nickel and nickel oxide nanoparticle-embedded functional carbon nanofibers for lithium sulfur batteries.

    Rakhimbek, Baikalov, Konarov, Mentbayeva,Zhang, Bakenov

    https://europepmc.org/article/pmc/pmc10790965

  5. 5
    Black Carrot Extract Containing Polyvinyl Alcohol-Based Nanofibers: Structural Characterization and Determination of Total Oxidant-Antioxidant Capacity

    Turgay Çetinkaya, Mehmet Aydın Dağdeviren  & Sibel Bayıl Oğuzkan

    https://ijiaar.penpublishing.net/files/9/manuscript/manuscript_4306/ijiaar-4306-manuscript-222248.pdf

  6. 6
    Optimization of Electrospun Bilayer Vascular Grafts through Assessment of the Mechanical Properties of Monolayers

    Suzan OzdemirJanset OztemurHande Sezgin and  Ipek Yalcin-Enis

    https://pubs.acs.org/doi/abs/10.1021/acsbiomaterials.3c01161

     

  7. 7
    Application of ZrO2-Based Hierarchical Nanofibers as a Promoter in Ni Catalyzed Methane Dry Re-Forming

    Manar Halabi, Omaier Naser-Eldeen Jin Wang, Leo Giloni Meirav Mann-Lahav Gideon S. Grader and Oz M. Gazit 

    https://pubs.acs.org/doi/epdf/10.1021/acsaem.3c01814

     

     

  8. 8
    Bacteria trapping effectivity on nanofibre membrane in liquids is exponentially dependent on the surface density

    Leontýna Varvařovská, Bruno Sopko, Radek Divín, Aleksei Pashschenko, Jan Fedačko, Jan Sabo, Alois Nečas, Evžen Amler, Taťána Jarošíková

    https://actavet.vfu.cz/media/pdf/actavet_2023092040435.pdf

  9. 9
    Fabrication and In Vitro Characterization of Polycaprolactone/Graphene Oxide/Collagen Nanofibers for Myocardial Repair

    Sema Seren Karapehlivan, Mehmet Necati Danisik, Zekiye Akdag, Elif Nur Yildiz, Oseweuba Valentine Okoro, Lei Nie, Amin Shavandi, Songul Ulag, Ali Sahin, Fatih Dumludag, and Oguzhan Gunduz

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/mame.202300189

  10. 10
    Efficient Polysulfides Conversion Kinetics Enabled by Ni@CNF Interlayer for Lithium Sulfur Batteries

     I. Rakhimbek, N. Baikalov, A. Konarov, A. Mentbayeva, Y. Zhang, Z. Mansurov, M. Wakihara, Zh. Bakenov 

    https://shorturl.at/gpuvB

  11. 11
    Herbal active ingredient-loaded poly(ω-pentadecalactone-co-δ-valerolactone)/gelatin nanofibrous membranes

    Cansu Ülker Turan, Mete Dervişcemaloğlu, Yüksel Güvenilir

    https://www.sciencedirect.com/science/article/abs/pii/S0939641123003107

  12. 12
    Desloratadine-Loaded Flexible Orally Dissolvable Tablets Made of Electrospun Fiber Mats

    Gülçin Arslan Azizoğlu, Buse Dönder, Nergis İnal, Erkan Azizoğlu

    https://www.researchsquare.com/article/rs-3539455/v1

  13. 13
    Production and characterization of polyamide-6 (PA6) and cellulose acetate (CA) based nanofiber membranes by electrospinning method

    Abdullah GUL Ismail TIYEK

    https://shorturl.at/fwyGY

  14. 14
    An overview of the electrospinning of polymeric nanofibers for biomedical applications related to drug delivery

    Rabia CeCe, Linning Jin, Monsur Islam, Jan G. Korvink, and Bharat Sharma

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adem.202301297

  15. 15
    Fabrication of polycaprolactone-chitosan/curcumin polymer composite fibers and evaluation of their in vitro release kinetic behavior and antibacterial-antifungal activity

    Fatih Ciftci & Ali Can Özarslan

    https://link.springer.com/article/10.1007/s10971-023-06264-x

  16. 16
    Breathable waterproof fabrics
  17. 17
    Gelatin nanofibers with black elderberry, Au nanoparticles and SnO2 as intelligent packaging layer used for monitoring freshness of Hake fish

    Turgay Cetinkaya, Fatih Bildik, Filiz Altay, Zafer Ceylan

    https://www.sciencedirect.com/science/article/abs/pii/S0308814623024615

  18. 18
    Fabrication and Characterization of Hazelnut Shell Powders-loaded Poly (lactic acid) (PLA) Composite Fibers
  19. 19
    Improving the Solubility and Absorption of the Low- Solubility Compound Aripiprazole by Electrospinning Nanofiber Formulation

    Hideo Takeda, Akane Shirahama, Mayuko Tanaka, Nihon Validation Technologies Corporation

    https://www.validation.co.jp/wp/wp-content/uploads/2023/10/3096-005_PS23-PosterTemplate_No2_final.pdf

  20. 20
    Biodegradable Polycaprolactone Fibers with Silica Aerogel and Nanosilver Particles Produce a Coagulation Effect

    Büşra Şengel Ayvazoğlu, Muhammet Ceylan 2, Aybüke A. Isbir Turan and Elif Burcu Yılmaz

    https://shorturl.at/wIKLW

  21. 21
    Miniaturization of an enclosed electrospinning process to enhance reproducibility in the fabrication of rapidly dissolving cell-based biosensors

    Patrick MorkusStephanie SibbaldLauren ChoiSarah RassenbergCarlos D. M. FilipeDavid R. Latulippe

     

    https://onlinelibrary.wiley.com/doi/abs/10.1002/biot.202300306

  22. 22
    Conductive electrospun polymer improves stem cell-derived cardiomyocyte function and maturation

    Gisselle Gonzalez, Aileena C. Nelson, Alyssa R. Holman, Alexander J. Whitehead, Erin LaMontagne, Rachel Lian, Ritwik Vatsyayan, Shadi A. Dayeh, Adam J. Engler

     

    https://www.sciencedirect.com/science/article/abs/pii/S014296122300371X

  23. 23
    Fucoidan-loaded electrospun Polyvinyl-alcohol/Chitosan nanofibers with enhanced antibacterial activity for skin tissue engineering

    Arnau Cuesta Puigmal, Musa Ayran, Songul Ulag, Eray Altan, Mehmet Mucahit Guncu, Burak Aksu, Barkan Kagan Durukan, Hilal Turkoglu Sasmazel, Roman A. Perez, Erhan Koc , Desmond O’Callaghan, Oguzhan Gunduz

    https://www.sciencedirect.com/science/article/abs/pii/S1751616123005167

  24. 24
    Fabrication of antimicrobial poly(3-hydroxybuthyrate)/poly(ε-caprolactone) nanofibrous mats loaded with curcumin/β-cylodextrin inclusion complex as potential wound dressing
  25. 25
    Electrospraying of phytosterols and their controlled release characteristics under in vitro digestive conditions
  26. 26
    Preparation and Characterization of Viburnum Opulus Containing Electrospun Membranes as Antibacterial Wound Dressing

    Adile Yuruk, Sevil Dincer Isoglu & Ismail Alper Isoglu

    https://link.springer.com/article/10.1007/s12221-023-00360-z

  27. 27
    Development of gallic acid-loaded ethylcellulose fibers as a potential wound dressing material

    Alexa-Maria Croitoru , Musa Ayran, Eray Altan, Yasin Karacelebi, Songul Ulag, Ali Sahin, Mehmet Mucahit Guncu, Burak Aksu, Oguzhan Gunduz, Bianca-Maria Tihăuan, Denisa Ficai, Anton Ficai

    https://www.sciencedirect.com/science/article/abs/pii/S014181302303893X

  28. 28
    Design and Synthesis of Novel Materials for Applications in Chemical Warfare Protection
    Biswas, Priyanka, University of Massachusetts Lowell ProQuest Dissertations Publishing,  2023. 30524564.

    https://www.proquest.com/openview/aea983609da116c6ff9ccf7891df7714/1?pq-origsite=gscholar&cbl=18750&diss=y

  29. 29
    High-performance SiO2 nanofiber membrane applied for high-temperature air filtration

    Laura Margarita Valencia-Osorio, Andrés Felipe Zapata-González, Jose David Ojeda-Galeano, Mônica Lopes Aguiar,
    Mónica Lucía Álvarez-Láinez

    https://www.sciencedirect.com/science/article/abs/pii/S138358662301938X

  30. 30
    Fabrication of nanoclay embedded adsorptive electrospun nanofiber membrane for removal of trace organic molecule

    Mustafa N. Taher, Derya Y. Koseoglu-Imer, Frank Lipnizki

    https://www.sciencedirect.com/science/article/abs/pii/S2352492823017658

  31. 31
    Co-loading of Temozolomide with Oleuropein or rutin into polylactic acid core-shell nanofiber webs inhibit glioblastoma cell by controlled release

    Melis Ercelik, Cagla Tekin, Fatma Nur Parin, Busra Mutlu, Hazal Yilmaz Dogan, Gulcin Tezcan, Secil Ak Aksoy, Melisa Gurbuz, Kenan Yildirim, Ahmet Bekar, Hasan Kocaeli, Mevlut Ozgur Taskapilioglu, Pinar Eser, Berrin Tunca

    https://www.sciencedirect.com/science/article/abs/pii/S014181302303619X

  32. 32
    New plasma-assisted polymerization/activation route leading to a high density primary amine silanization of PCL/PLGA nanofibers for biomedical applications

    Sheida Aliakbarshirazi, Rouba Ghobeira, Tim Egghe, Nathalie De Geyter, Heidi Declercq, Rino Morent

    https://www.sciencedirect.com/science/article/abs/pii/S0169433223020603

  33. 33
    Copolymers and terpolymers of vinyl phosphonic acid, acrylonitrile, methyl acrylate, and vinyl acetate. Thermal oxidative stabilization and their nanofiber

    Elif Keskin, Nesrin Köken, Nilgün Kızılcan, Ahmet Akar

     

    https://www.tandfonline.com/doi/abs/10.1080/25740881.2023.2250863

  34. 34
    Reversible Thermochromic Polycaprolactone Nanofibers for Repetitive Usage

    Sebnem Duzyer Gebizli, Nihal Guclu, Mehmet Tiritoglu, Serkan Tezel & Mehmet Orhan

    https://link.springer.com/article/10.1007/s12221-023-00323-4

  35. 35
    A novel biosensor based on molecularly imprinted polymer coated nanofiber composite for uric acid analysis in body fluids

    Hamid Hashemi-Moghaddam, Ozgur Ozalp , Mustafa Soylak

    https://www.sciencedirect.com/science/article/abs/pii/S2352492823015866

  36. 36
    Fabrication and characterization of biobased electrospun pH indicators from black carrot anthocyanin-loaded polylactide
  37. 37
    Electrospun nanofibers doped with PVDF and PLZT nanoparticles for potential biomedical and energy harvesting applications

    Ashok Batra, James Sampson, Angela Davis, James Currie & Ashok Vaseashta

     

    https://link.springer.com/article/10.1007/s10854-023-11066-6

  38. 38
    Three-Dimensional Piezoelectric–Triboelectric Hybrid Nanogenerators for Mechanical Energy Harvesting

     

     

  39. 39
    Design and development of textile-based strain sensors via screen printing

    Tugce Caliskan, Aleyna Arslan, Berkay Kostekci, M.Alperen Kumru, Merve Acer Kalafat, Ikilem Gocek

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214785323041858

  40. 40
    Effect of Pre-Oxidation of Electrospun Polyvinylpyrrolidone-Derived CoxP/C Composite Nanofibers on their Electrochemical Performance as Anode in Lithium-Ion Batteries

     S. Berikbaikyzy1, Y. Sagynbay, G. Turarova, I. Taniguchi, Zh. Bakenov,  A. Belgibayeva 

    https://shorturl.at/hpWY3

  41. 41
    Superior Thermoelectric Performance of Textured Ca3Co4−xO9+???? Ceramic Nanoribbons

    Itzhak I. Maor, Katharina Kruppa, Adi Rozencweig, Amir Sterzer, Frank Steinbach, Vadim Beilin, Bernd Breidenstein, Gennady E. Shter, Meirav Mann-Lahav, Armin Feldhoff  and Gideon S. Grader

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.202304464

  42. 42
    Synthesis of Free-Standing Tin Phosphide/Phosphate Carbon Composite Nanofibers as Anodes for Lithium-Ion Batteries with Improved Low-Temperature Performance

    Ayaulym Belgibayeva,  Makpal Rakhatkyzy, Aiym Rakhmetova, Gulnur Kalimuldina, Arailym Nurpeissova, and Zhumabay Bakenov

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/smll.202304062

  43. 43
    Preparation of Bacillus pumilus loaded electrosprayed nanoparticles as a plant protective against postharvest fungal decay

    Meyrem Vehapi, Benan İnan, Selma Kayacan-Cakmakoglu, Osman Sagdic & Didem Balkanlı Özçimen

    https://link.springer.com/article/10.1007/s10658-023-02738-4

  44. 44
    Design of Cinnamaldehyde- and Gentamicin-Loaded Double-Layer Corneal Nanofiber Patches with Antibiofilm and Antimicrobial Effects

    Sumeyye Cesur, Elif Ilhan, Tufan Arslan Tut, Elif Kaya, Basak Dalbayrak, Gulgun Bosgelmez-Tinaz, Elif Damla Arısan, Oguzhan Gunduz

    and Ewa Kijeńska-Gawrońska

    https://pubs.acs.org/doi/full/10.1021/acsomega.3c00914

  45. 45
    Electrospun nanofiber scaffolds for soft and hard tissue regeneration

     Wang Xinyi, Xie Xianrui, Chen Yujie, Wang Xiaoyu, Xu Xiaoqing, Shen Yihong, Mo Xiumei 

    https://shorturl.at/dfxBO

  46. 46
    Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering

    https://www.mdpi.com/2306-5354/10/7/854

  47. 47
    Production and characterization of polyamide-6 (PA6) and cellulose acetate (CA) based nanofiber membranes by electrospinning method

    Abdullah GUL, İsmail TIYEK

     

    https://shorturl.at/dhv05

  48. 48
    FABRICATION AND CHARACTERIZATION OF ELECTROSPUN POLYLACTIC ACID FILMS REINFORCED WITH CHILEAN BAMBOO CELLULOSE NANOFIBERS

     ALEXANDER GAITÁN and WILLIAM GACITÚA 

     

    https://shorturl.at/cvLT6

  49. 49
    Electrospun composite nanofibers for treating infectious esophagitis

    Muge Koyun, Rabia Betul Sulutas, Yigit Turan, Hatice Karabulut, Armaghan Moradi, Huseyin Berkay Ozarici, Songul Ulag,

    Ali Sahin, Mehmet Mucait Guncu & Oguzhan Gunduz

     

    https://link.springer.com/article/10.1007/s42247-023-00533-9

  50. 50
    Incorporating antioxidative peptides within nanofibrous delivery vehicles: Characterization and in vitro release kinetics

     Zahide Kirbas, Filiz Altay 

    Food Bioscience

  51. 51
    Incorporation of Encapsulated Yoghurt Bacteria into Stirred Yoghurt to Improve their Survival in an In Vitro Digestive Conditions

    Çiğdem Hökelekli,Firuze Ergin & Ahmet Kucukcetin

    https://link.springer.com/article/10.1007/s11947-023-03161-7

  52. 52
    Fabrication and characterization of chlorhexidine gluconate loaded poly(vinyl alcohol)/45S5 nano-bioactive glass nanofibrous membrane for guided tissue regeneration applications

    Ceren Keçeciler-EmirYeliz Başaran-ElalmişYeşim Müge ŞahinErdi BuluşSevil Yücel

    https://onlinelibrary.wiley.com/doi/abs/10.1002/bip.23562

  53. 53
    Modified Poly(ε-caprolactone) with Tunable Degradability and Improved Biofunctionality for Regenerative Medicine

    Jun Shen, Weihao Yuan, Maryam Badv*Alireza Moshaverinia*, and Paul S. Weiss*

    https://pubs.acs.org/doi/full/10.1021/acsmaterialsau.3c00027

  54. 54
    Preparation and comparison of electrospun PEO/PTFE and PVA/PTFE nanofiber membranes for syringe filters
  55. 55
    Scaffolds with high oxygen content support osteogenic cell survival under hypoxia
  56. 56
    Hypericum perforatum Oil and Vitamin A Palmitate-Loaded Gelatin Nanofibers Cross-Linked by Tannic Acid as Wound Dressings

    Aysen Akturk, Funda Nur Kasikci, Dilara Nur Dikmetas, Funda Karbancioglu-Guler and Melek Erol-Taygun

     

    https://pubs.acs.org/doi/full/10.1021/acsomega.3c02967

  57. 57
    Synthesis and characterization of graphene nanoplatelets-containing fibers by electrospinning

    Enrico Storti, Michal Lojka , Simona Lencová, J ana Hubálková, Ondřej Jankovský , Christos G. Aneziris

    https://www.sciencedirect.com/science/article/pii/S2666539523000676

  58. 58
    Electrically Conductive and Highly Stretchable Piezoresistive Polymer Nanocomposites via Oxidative Chemical Vapor Deposition

    Adrivit Mukherjee, Afshin Dianatdar, Magdalena Z. Gładysz, Hamoon Hemmatpour, Mart Hendriksen, Petra Rudolf, Małgorzata K. Włodarczyk-Biegun, Marleen Kamperman, Ajay Giri Prakash Kottapalli and Ranjita K. Bose.

     

    https://pubs.acs.org/doi/full/10.1021/acsami.3c06015

  59. 59
    Extracted Silk Fibroin-Cellulose Acetate Nanofibrous Scaffolds for Tissue Engineering Applications

    Akash NundlollNowsheen GoonooArchana Bhaw-Luximon

     

    https://onlinelibrary.wiley.com/doi/abs/10.1002/masy.202200186

  60. 60
    Generation of Photopolymerized Microparticles Based on PEGDA Hydrogel Using T-Junction Microfluidic Devices: Effect of the Flow Rates

    Gabriela Hinojosa-Ventura, Mario Alberto García-Ramírez, José Manuel Acosta-Cuevas,

    Orfil González-Reynoso

     

    https://www.mdpi.com/2072-666X/14/7/1279

  61. 61
    01D52Design of Core-Shell Polylactic Acid (PLA) electrospun nanofibers as potential healing carriers

    Mohamad Tarmizie Hassim, M.N. Prabhakar, Jung-il Song

     

    https://www.sciencedirect.com/science/article/abs/pii/S1359835X23002373

  62. 62
    Developing a pressure sensing sensorized sock based on piezoelectric pressure sensors, for performing gait analysis
  63. 63
    The production of highly efficient visible-light-driven electrospun α-Fe2O3 photocatalyst through modifying iron source material for wastewater treatment applications
  64. 64
    Improving the interfacial performance and the adsorption inhibition of an extended-surfactant mixture for enhanced oil recovery using different hydrophobicity nanoparticles

    Christian A. Paternina, Henderson Quintero, Ronald Mercado

     

    https://www.sciencedirect.com/science/article/pii/S001623612301373X

  65. 65
    Development of polycaprolactone-based electrospun pH-sensitive sensors as instant colorimetric indicators for food packaging

    Nihal GucluSebnem Duzyer GebizliMehmet Orhan

     

    https://onlinelibrary.wiley.com/doi/abs/10.1111/cote.12701

  66. 66
    ORAL PRESENTATION-FULL PAPER ANTIFUNGAL ACTIVITY OF CRUDE EXTRACTS OF GUAVA (PSIDIUM GUAJAVA) LEAVES AND BARK AGAINST FUSARIUM …
  67. 67
    Understanding the Influence of Li7La3Zr2O12 Nanofibers on Critical Current Density and Coulombic Efficiency in Composite Polymer Electrolytes

    Michael J. CounihanDevon J. PowersPallab BaraiShiyu HuTeodora ZagoracYundong ZhouJungkuk LeeJustin G. ConnellKanchan S. ChavanIan S. GilmoreLuke HanleyVenkat Srinivasan

    Yuepeng Zhang, and  Sanja Tepavcevic

     

    https://pubs.acs.org/doi/abs/10.1021/acsami.3c04262

  68. 68
    Electrospinning in personal protective equipment for healthcare work

    Ariane Regina Souza Rossin, Lucas Spessato, Fabiana da Silva Lima Cardoso, Josiane Caetano, Wilker Caetano,

    Eduardo Radovanovic & Douglas Cardoso Dragunski

     

    https://link.springer.com/article/10.1007/s00289-023-04814-5

  69. 69
    ORIENTED FIBROUS POLY (BUTYLENE ADIPATE-co-TEREPHTHALATE) MATRICES WITH NANOTOPOGRAPHIC FEATURES: PRODUCTION AND CHARACTERIZATION
  70. 70
    Particle Technology and Textiles
  71. 71
    3D-Printed Tumor-on-Chip for the Culture of Colorectal Cancer Microspheres: Mass Transport Characterization and Anti-Cancer Drug Assays
  72. 72
    Fabrication of mixed matrix nanofibers with electrospraying and electrospinning techniques and their application to gas toluene removal

    Elifnur Gezmis-Yavuz, C. Elif Cansoy, Derya Y. Koseoglu-Imer

    https://www.sciencedirect.com/science/article/abs/pii/S2213343723008060

     

  73. 73
    Electrospun nanofibers for medical face mask with protection capabilities against viruses: State of the art and perspective for industrial scale-up
  74. 74
    Versatile Microfluidics for Biofabrication Platforms Enabled by an Agile and Inexpensive Fabrication Pipeline

    Amirpasha Moetazediana,b*, Alessia Candeoc, Siyun Liua, Arran Hughesd, Vahid Nasrollahid, Mozafar Saadatd, Andrea Bassic, Liam M. Grovere, Liam R. Coxf, Gowsihan Poologasundarampillaia**

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/adhm.202300636

     

  75. 75
    THE EFFECT OF POLYMER TYPE AND FIBER ORIENTATION ON THE COMPLIANCE PROPERTIES OF ELECTROSPUN VASCULAR GRAFTS

    OZDEMIR SUZAN*, OZTEMUR JANSET, SEZGIN HANDE AND YALCIN-ENIS IPEK

    Istanbul Technical University, Textile Engineering Department, Istanbul, Turkey

    https://dspace.tul.cz/bitstream/handle/15240/167240/VaT_2023_1_11.pdf?sequence=1

  76. 76
    A PRELIMINARY STUDY EXAMINING THE BURST STRENGTH OF VASCULAR TUBULAR SCAFFOLDS

    OZTEMUR JANSET*, ÖZDEMIR SUZAN, SEZGIN HANDE AND YALCIN-ENIS IPEK

    Istanbul Technical University, Textile Engineering Department, Istanbul, Turkey

    https://dspace.tul.cz/bitstream/handle/15240/167241/VaT_2023_1_12.pdf?sequence=1

  77. 77
    FABRICATION AND CHARACTERIZATION OF ELECTROSPUN ANTHOCYANIN-LOADED POLYLACTIDE NANOFIBERS

    PALAK HANDAN* AND KAYAOGLU BURÇAK KARAGÜZEL

    http://vat.ft.tul.cz/2023/1/VaT_2023_1_13.pdf

  78. 78
    Incorporating antioxidative peptides within nanofibrous delivery vehicles: Characterization and in vitro release kinetics

    ,

    Istanbul Technical University, Faculty of Chemical and Metallurgical, Department of Food Engineering, 34469, Maslak, Istanbul, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S2212429223003115

  79. 79
    Synthesis of Graphene Oxide/ Poly(Vinyl Alcohol) Composite and Investigation of Graphene Oxide Effect on Diameter and Pore Size of Poly(Vinyl Alcohol) Nanofibers

    Zeeshan Abdullah, Abdul Waheed Anwar, Inam Ul Haq*, Zunair Arslan, Asifa Mubashar, Shan Ahmad, Abdul Waheed,

    Muhammad Ajmal, Imrza Imran Aziz Baig

     

    https://www.scientific.net/JNanoR.78.23

  80. 80
    A Novel Strategy as a Potential Rapid Therapy Modality in the Treatment of Corneal Ulcers: Fluconazole/Vancomycin Dual Drug-Loaded Nanofibrous Patches
  81. 81
    Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue
  82. 82
    Investigation of the antitumor effect on breast cancer cells of the electrospun amygdalin-loaded poly(l-lactic acid)/poly(ethylene glycol) nanofibers
  83. 83
    Preparation and Evaluation of Core–Shell Nanofibers Electrospun from PEU and PCL Blends via a Single-Nozzle Spinneret

    https://pubs.acs.org/doi/abs/10.1021/acsapm.2c02076

  84. 84
    Efficient, Breathable, and Compostable Multilayer Air Filter Material Prepared from Plant-Derived Biopolymers

    1,†,

    1,† and

    1,2,*

    1
    Department of Mechanical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
    2
    School of Biomedical Engineering, McMaster University, 1280 Main St W, Hamilton, ON L8S 4L8, Canada
    *
    Author to whom correspondence should be addressed.
    These authors contributed equally to this work.

    https://www.mdpi.com/2077-0375/13/4/380

  85. 85
    Investigations on the Mechanical Properties of PC and ABS Electrospun Nanofiber Embedded Glass Fiber Reinforced Composite
    • Mehmet Safa Bodur (Yeditepe University)
    • Alper Adrian Baysan (KU Leuven)
    • Merve Uysal Komurlu (Texas A&M University)
    • Ali Avci (Hakkari University)

    https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE11227080

  86. 86
    Superhydrophobic Self-Cleaning Membranes Made by Electrospinning
  87. 87
    A Comparative Study on the Effects of Spray Coating Methods and Substrates on Polyurethane/Carbon Nanofiber Sensors

    1,

    1,

    1,

    2 and

    1,2,*

    1
    School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
    2
    School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia
    *
    Author to whom correspondence should be addressed.
  88. 88
    Development of a laminable, cellulose-based Separator for Lithium-Ion Batteries

    Master’s Thesis submitted by

    Jakob Veitl

    Ergoldsbach

    Development of a laminable, cellulose-based Separator for Lithium-Ion Batteries

  89. 89
    Photocatalytic and Antimicrobial Properties of Electrospun TiO2–SiO2–Al2O3–ZrO2–CaO–CeO2 Ceramic Membranes
    Nuray Yerli Soylu*

    • Anıl Soylu
    • Dilara Nur Dikmetas
    • Funda Karbancioglu-Guler
    • Sadriye Kucukbayrak, and 
    • Melek Erol Taygun

    https://pubs.acs.org/doi/full/10.1021/acsomega.2c06986

  90. 90
    Bioprospecting Antarctic Microalgae as Anticancer Agent Against PC-3 and AGS Cell Lines

    , , , ,

    a
    Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Davutpasa Campus, 34220 Esenler-Istanbul, TURKIYE
    b
    Health Biotechnology Joint Research and Application Center of Excellence, 34220 Esenler, Istanbul, TURKIYE

     

    https://www.sciencedirect.com/science/article/abs/pii/S1369703X23000955

  91. 91
    Co-axial electrospinning of PLLA shell, collagen core nanofibers for skin tissue engineering

    Erkan T Baran, Aydin Tahmasebifar and Bengi Yilmaz

     

    https://journals.sagepub.com/doi/abs/10.1177/08853282231162200

  92. 92
    Electrically Triggered Quercetin Release from Polycaprolactone/Bismuth Ferrite Microfibrous Scaffold for Skeletal Muscle Tissue

    by

    1,2,

    1,2,

    1,2,

    1,

    1,2,

    3,4,5,

    3,6,7,

    8,

    4,5,9,

    1,2,* and

    3,4,5,10

    1
    Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey
    2
    Institute of Pure and Applied Sciences, Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
    3
    Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
    4
    National Centre for Micro- and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
    5
    National Centre for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
    6
    Research Institute of the University of Bucharest—ICUB, 050567 Bucharest, Romania
    7
    Research & Development for Advanced Biotechnologies and Medical Devices, SC Sanimed International Impex SRL, 087040 Calugareni, Romania
    8
    Department of Biochemistry, Faculty of Medicine, Marmara University, Istanbul 34722, Turkey
    9
    Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania
    10
    Academy of Romanian Scientists, Ilfov St. 3, 050044 Bucharest, Romania
    *
    Author to whom correspondence should be addressed.
  93. 93
    Boron nitride decorated poly(vinyl alcohol)/poly(acrylic acid) composite nanofibers: A promising material for biomedical applications

    , , ,

    a
    Department of Chemistry, Faculty of Science and Arts, Kırıkkale University, Yahşihan, 71450, Kırıkkale, Turkey
    b
    Graduate School of Natural and Applied Sciences, İzmir Katip Çelebi University, İzmir, 35620, Turkey
    c
    Department of Engineering Sciences, Izmir Katip Çelebi University, Izmir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S1751616123001261

  94. 94
    Influence of Polycaprolactone Concentration and Solvent Type on the Dimensions and Morphology of Electrosprayed Particles

    by

    1

    1

    2

    2 and

    1

    1
    Department of Biomedical Materials Science, University of Mississippi Medical Center, Jackson, MS 39216, USA
    2

    Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, MS 39216, USA

  95. 95
    A chemosensitive based ammonia gas sensor with PANI/PEO- ZnO nanofiber composites sensing layer
  96. 96
    Silymarin-loaded electrospun polycaprolactone nanofibers as wound dressing

    Aisegkioul Sali, Sebnem Duzyer Gebizli & Gokhan Goktalay

     

    https://link.springer.com/article/10.1557/s43578-023-00959-1

  97. 97
    Oxime-Functionalized, Nonwoven Nanofabrics for Rapid, Inexpensive Decontamination of a Nerve Agent Simulant

    Priyanka Biswas

    • Dylan B. Shuster
    • Busra Sonmez Baghirzade
    • Randall A. Scanga
    • Sophie A. Harris
    • Cynthia N. Tran
    • Onur G. Apul*, and 
    • James F. Reuther*

    https://pubs.acs.org/doi/abs/10.1021/acsanm.2c05216

  98. 98
    Accessibility of adsorption sites for superfine powdered activated carbons incorporated into electrospun polystyrene fibers

    , , , , ,

    a
    Department of Civil and Environmental Engineering, University of Massachusetts Lowell, Lowell, MA 01854, United States
    b
    Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, United States
    c
    Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, United States
    d
    Department of Civil and Environmental Engineering, University of Maine, Orono, ME 04469, United States
    e
    Department of Chemistry, University of Maine, Orono, ME 04469, United States

     

    https://www.sciencedirect.com/science/article/abs/pii/S1385894723007404

  99. 99
    Oral empagliflozin-loaded tri-layer core-sheath fibers fabricated using tri- axial electrospinning: Enhanced in vitro and in vivo antidiabetic performance

    , , , , , , , , ,

    a
    Department of Pharmacology, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
    b
    Center for Nanotechnology and Biomaterials Application and Research, Marmara University, Istanbul 34722, Turkey
    c
    UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
    d
    Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul 34854, Turkey
    e
    Stem Cell and Gene Therapies Research and Applied Center, Medical Faculty, Kocaeli University, Kocaeli 41380, Turkey
    f
    I3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
    g
    Department of Metallurgy and Material Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
    h
    Biomedical Engineering Department, University of Aveiro, 3810-193 Aveiro, Portugal
    i
    Genetic and Metabolic Diseases Research and Investigation Center, Marmara University, 34722 Istanbul, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0378517323001369

  100. 100
    Performance of Cu/ZnO Nanosheets on Electrospun Al2O3 Nanofibers in CO2 Catalytic Hydrogenation to Methanol and Dimethyl Ether
    1
    The Wolfson Department of Chemical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel
    2
    Université de Lille, Centre National de la Recherche Scientifique (CNRS), Centrale Lille, Université d’Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS), F-59000 Lille, France
    3
    The Nancy & Stephan Grand Technion Energy Program (GTEP), Technion—Israel Institute of Technology, Haifa 3200003, Israel
    *

    Authors to whom correspondence should be addressed.

    https://www.mdpi.com/2079-4991/13/4/635

     

  101. 101
    Improved delivery of hydrophobic drugs by a self-microemulsifying drug delivery system and electrospun polymer fibers

    1. Prof. Dr. Karsten Mäder
    2. Prof. Dr. Eyal Zussman
    3. PD Dr. Christian Schmelzer

    https://opendata.uni-halle.de/bitstream/1981185920/100845/1/Dissertation_MLU_2022_ZechJohanna.pdf

  102. 102
    Controlled Release of Gentamicin from Electrospun Poly(Vinyl Alcohol)/Gelatin Nanofibers: The Effect of Crosslinking Time Using Glutaraldehyde Vapor

    Dilruba BaykaraEsra PilavciDr. Sumeyye CesurElif IlhanDr. Songul UlagDr. Mustafa SengorEwa Kijeńska-GawrońskaProf. Oguzhan Gunduz

    https://chemistry-europe.onlinelibrary.wiley.com/doi/full/10.1002/slct.202203681

  103. 103
    Enhanced flexibility and thermal conductivity of HfC decorated carbon nanofiber mats

    , , ,

    Plasma Forming Laboratory, Mechanical and Materials Engineering, College of Engineering and Computing, Florida International University, Miami, FL, 33174, USA

    https://www.sciencedirect.com/science/article/abs/pii/S0008622323000623

  104. 104
    Enrichment of Cellulose Acetate Nanofibrous Scaffolds with Retinyl Palmitate and Clove Essential Oil for Wound Healing Applications
    Aysen Akturk
    Department of Chemical Engineering, Istanbul Technical University, Istanbul34469, Turkey
  105. 105
    Recent progress, bottlenecks, improvement strategies and the way forward of membrane distillation technology for arsenic removal from water: A review

    a
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    b
    Chemical Engineering Department, Sabratha Faculty of Engineering, Sabratha University, Libya
    c
    College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214714423000211

  106. 106
    Organomodified Nanoclay With Boron Compounds Is Improving Structural And Antibacterial Properties Of Nanofibrous Matrices

    a
    Graduate School of Science and Engineering, Hacettepe University, Beytepe, Ankara, Turkey
    b
    Bioengineering Department, Hacettepe University, Beytepe, Ankara, Turkey
    c
    Chemical Engineering Department, Hacettepe University, Beytepe, Ankara, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0939641123000152

  107. 107
    Diatom Silica Frustules-Doped Fibers for Controlled Release of Melatonin for Bone Regeneration

    a
    Department of Genetics and Bioengineering, Istanbul Bilgi University, Turkey
    b
    Department of Engineering Sciences, Middle East Technical University, Turkey
    c
    International Centre for Research on Innovative Bio-based Materials (ICRI-BioM) – International Research Agenda, Lodz University of Technology, Poland
    d
    BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering Research Center, Middle East Technical University, Turkey
    e
    MODSIMMER, Modeling and Simulation Research & Development Center, Middle East Technical University, Turkey

     

    https://www.sciencedirect.com/science/article/abs/pii/S0014305723000411

  108. 108
    Recent progress, bottlenecks, improvement strategies and the way forward of membrane distillation technology for arsenic removal from water: A review

    a
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
    b
    Chemical Engineering Department, Sabratha Faculty of Engineering, Sabratha University, Libya
    c
    College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China

     

    https://www.sciencedirect.com/science/article/abs/pii/S2214714423000211

  109. 109
    Scale-up strategies for electrospun nanofiber production

    a
    School of Textile Science and Engineering, Wuhan Textile University, Wuhan, China
    b
    School of Textile Science and Engineering, Tiangong University, Tianjin, China
    c
    Center for Nanofibers & Nanotechnology, National University of Singapore, Singapore, Singapore

     

    https://www.sciencedirect.com/science/article/pii/B9780128230329000209

  110. 110
    The highly absorbent polyurethane/polylactic acid blend electrospun tissue scaffold for dermal wound dressing
  111. 111
    Single and multi-dose drug loaded electrospun fiber mats for wound healing applications
  112. 112
    An Investigation into the Effects of Electric Field Uniformity on Electrospun TPU Fiber Nano-Scale Morphology
    Nanocomposites and Mechanics Laboratory (NCM Lab), University of New Brunswick, Fredericton, NB E3B 5A3, Canada
    *
    Author to whom correspondence should be addressed.
  113. 113
    Production and characterization of Polyamide 6.6 based nanofiber membranes for filter applications by electrospinning method

    Abdullah Gül1* page1image638194432, İsmail Tiyek1 page1image638196832, Gökmen Zor2 page1image638199088, Nurullah Yazıcı3
    1Department of Textile Engineering, Faculty of Engineering and Architecture, Kahramanmaraş Sutcu Imam University, Kahramanmaras, 46100, Türkiye

    2Department of Textile, Clothing, Shoes and Leather, Vocational School of Technical Sciences, 7 Aralık Üniversity, 79000, Kilis, Türkiye 3Department of Maths and Science Education, Faculty of Education, Gaziosmanpaşa University, 60250, Tokat, Türkiye

     

    https://www.researchgate.net/profile/Abdullah-Guel-2/publication/366920801_Production_and_characterization_of_Polyamide_66_based_nanofiber_membranes_for_filter_applications_by_electrospinning_method/links/63b8802ea03100368a5b2745/Production-and-characterization-of-Polyamide-66-based-nanofiber-membranes-for-filter-applications-by-electrospinning-method.pdf

  114. 114
    Desalination technologies, membrane distillation, and electrospinning, an overview

    a
    Department of Chemistry, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
    b
    Department of General Studies, University of Prince Mugrin Al Munawara, Saudi Arabia
    c
    Enzyme Technology and Green Synthesis Group, Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Johor, Malaysia
    d
    Advanced Membrane Technology Research Centre (AMTEC), Universiti Teknologi Malaysia, 81310, UTM Johor Bahru, Malaysia
    e
    Department of Chemistry, King Abdulaziz University, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
    f
    Center of Excellence in Desalination Technology, King Abdulaziz University, P. O. Box 80200, Jeddah, 21589, Saudi Arabia
    g
    Department of Mechanical Engineering, King Abdulaziz University, P. O. Box 80200, Jeddah, Saudi Arabia

     

    https://www.sciencedirect.com/science/article/pii/S2405844023000178

  115. 115
    Electrospun biopolymer material for antimicrobial function of fresh fruit and vegetables: Application perspective and challenges

    a
    Co-Innovation Center for Sustainable Forestry in Southern China, Forestry College, Nanjing Forestry University, Nanjing, 210037, China
    b
    Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
    c
    Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China

     

    https://www.sciencedirect.com/science/article/pii/S0023643822013093

  116. 116
    Flexible Electrospun PVDF Piezoelectric Nanogenerators with Electrospray-Deposited Graphene Electrodes
  117. 117
    Nanofiber production from rose water and mate plant extract solutions using environmentally friendly electrospinning

    ÇAĞLAR SİVRİ1, AMINODDIN HAJI2

    1Bahçeşehir University, Faculty of Engineering and Natural Sciences, Department of Management Engineering, Ciragan Cd. Yali Sk. No=1, 34349, Istanbul, Türkiye
    e-mail: caglar.sivri@eng.bau.edu.tr

    2Department of Textile Engineering, Yazd University, Yazd 8915818411, Iran e-mail: ahaji@yazd.ac.ir

    https://www.researchgate.net/publication/366517938_Nanofiber_production_from_rose_water_and_mate_plant_extract_solutions_using_environmentally_friendly_electrospinning

     

     

  118. 118
    Fabrication and Application of Halloysite Nanotube-Embedded Photocatalytic Nanofibers with Antibacterial Properties
  119. 119
    Battery anode design: From 1D nanostructure to 3D nanoarchitecture – Enabling next-generation energy storage technology

    a
    Oregon Renewable Energy Center (OREC), Klamath Falls, OR 97601, USA
    b
    Department of Manufacturing and Mechanical Engineering and Technology, Oregon Institute of Technology, Klamath Falls, OR 97601, USA
    c
    Industrial Engineering Department, BINUS Graduate Program—Master of Industrial Engineering, Bina Nusantara University, Jakarta 11480, Indonesia
    d
    Xtreme Materials Lab, Engineering Product Development, Singapore University of Technology and Design (SUTD), Singapore 487372, Singapore
    e
    Department of Engineering, La Trobe University, Melbourne, VIC 3086, Australia

    https://www.sciencedirect.com/science/article/abs/pii/S0167931722002210

     

  120. 120
    Superporous nanocarbon materials upcycled from polyethylene terephthalate waste for scalable energy storage

    a
    Department of Chemistry, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    b
    Department of Electrical and Computer Engineering, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    c
    Mechanical Engineering Department, Materials Science and Engineering Program, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
    d
    Department of Electrical and Electronics Engineering, Kırşehir Ahi Evran University, 40100 Kırşehir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S2352152X22023180

     

  121. 121
    Electrospun Polyacrylonitrile Silver(I,III) Oxide Nanoparticle Nanocomposites as Alternative Antimicrobial Materials

     

    William B. WangChieh-Yu PanEng-Yen HuangBai-Jing PengJonathan Hsu*, and Jude C. Clapper*

    https://pubs.acs.org/doi/full/10.1021/acsomega.2c06208

     

  122. 122
    Electroblown titanium dioxide and titanium dioxide/silicon dioxide submicron fibers with and without titania nanorod layer for strontium(II) uptake

    Department of Chemistry, P.O. Box 55, FI-00014 University of Helsinki, Finland

    https://www.sciencedirect.com/science/article/pii/S2666821122001946

     

  123. 123
    Tailor-made novel electrospun polycaprolactone/polyethyleneimine fiber membranes for laccase immobilization: An all-in-one material to biodegrade textile dyes and phenolic compounds

     

    a
    Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey
    b
    Biotechnology Research Laboratory, Department of Biology, Faculty of Arts and Science, Inönü University, 44280, Malatya, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0045653522039716

  124. 124
    Advanced Functional Hybrid Proton Exchange Membranes Robust and Conductive at 120 °C

    Jason Richard, Fatima Haidar, Madeline K. Alzamora, Manuel Maréchal, Natalia Rovira,

    Christophe Vacquier, Clément Sanchez, and Christel Laberty-Robert

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202201601

  125. 125
    Investigation of continuous PAN nanofiber yarn produced with polymer additives

    Ismail Borazan

    a Faculty of Engineering, Architecture and Design, Department of Textile Engineering, Bartın University, Bartın, Turkey;b Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey.

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2150957

  126. 126
    Design of highly selective, and sensitive screen-printed electrochemical sensor for detection of uric acid with uricase immobilized polycaprolactone/polyethylene imine electrospun nanofiber

    Biochemistry and Biomaterials Research Laboratory, Department of Chemistry, Faculty of Arts and Sciences, İnönü University, 44280 Malatya, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S001346862201831X

     

  127. 127
    Preparation of nanodelivery systems for oral administration of low molecular weight heparin

    a
    Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
    b
    Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S1773224722009790

  128. 128
    Advanced Functional Hybrid Proton Exchange Membranes Robust and Conductive at 120 °C

    Jason Richard, Fatima Haidar, Madeline K. Alzamora, Manuel Maréchal, Natalia Rovira,

    Christophe Vacquier, Clément Sanchez, and Christel Laberty-Robert*

    https://onlinelibrary.wiley.com/doi/pdf/10.1002/admi.202201601

     

  129. 129
    Investigation of continuous PAN nanofiber yarn produced with polymer additives

    Ismail Borazan

    a Faculty of Engineering, Architecture and Design, Department of Textile Engineering, Bartın University, Bartın, Turkey;b Faculty of Engineering and Natural Sciences, Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey

    iborazan@itu.edu.tr

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2150957

  130. 130
    Stimuli-responsive nanoparticle-nanofiber hybrids for drug delivery and photodynamic therapy

    a
    Plasma Aided Biomedical Research Group (pabmed), Department of Biomedical Engineering, TOBB University of Economics and Technology, 06560 Ankara, Turkey
    b
    Karlsruhe Institute of Technology, Institute of Functional Interfaces – IFG, 76344 Karlsruhe, Germany
    c
    Department of Molecular Medicine, Graduate School of Health Sciences, TOBB University of Economics and Technology, 06560 Ankara, Turkey
    d
    Soft Matter Laboratory, Department of Chemical Engineering, Inha University, Incheon 402-751, Korea
    e
    Department of Material Science and Engineering, Faculty of Engineering, Ostim Technical University, 06374 Ankara, Turkey
    f
    Department of Biomedical Engineering, İzmir Democracy University, 35140 İzmir, Turkey

    https://www.sciencedirect.com/science/article/abs/pii/S0378517322009978

  131. 131
    Photothermal Electrospun Nanofibers Containing Polydopamine-Coated Halloysite Nanotubes as Antibacterial Air Filters
    • Oyku Demirel
    • Sarp Kolgesiz
    • Sena Yuce
    • Serap Hayat Soytaş
    • Derya Y. Koseoglu-Imer, and 
    • Hayriye Unal*

    https://pubs.acs.org/doi/full/10.1021/acsanm.2c04026

     

     

  132. 132
    DESIGN AND DEVELOPMENT OF A NANOFIBER REINFORCED MULTILAYERED CLOTH FACE MASK

    Handan Palak1(*) page1image1283205808, Burçak Karagüzel Kayaoglul

    1 Department of Textile Engineering, Faculty of Textile Technologies and Design, Istanbul Technical University, Gumussuyu Campus, Inonu Cad., No. 65, Istanbul, Turkey

    http://212.51.210.149/xmlui/bitstream/handle/11652/4458/26_Design_devol_Palak_Autex_2022.pdf?sequence=1&isAllowed=y

  133. 133
    A flexible carbon nanofiber and conjugated polymer-based electrode for glucose sensing

    a
    Faculty of Pharmacy, Department of Analytical Chemistry, Acıbadem Mehmet Ali Aydınlar University, Istanbul, Turkey
    b
    Department of Polymer Materials Engineering, Bursa Technical University, Bursa, Turkey
    c
    Department of Engineering Fundamental Sciences, Si̇vas University of Science and Technology, Sivas, Turkey
    d
    Faculty of Science, Department of Chemistry, Middle East Technical University, Ankara, Turkey
    e
    Department of Polymer Science and Technology, Middle East Technical University, Ankara 06800, Turkey
    f
    The Center for Solar Energy Research and Application (GUNAM), Middle East Technical University, Ankara, Turkey
    g
    Department of Micro and Nanotechnology, Middle East Technical University, Ankara 06800, Turkey
    h
    Faculty of Engineering, Department of Biomedical Engineering, Necmettin Erbakan University, Konya, Turkey
    https://www.sciencedirect.com/science/article/abs/pii/S0026265X22009766
  134. 134
    Electrospinning of PVDF nanofibers incorporated cellulose nanocrystals with improved properties

    Deniz Aydemir, Eser Sözen, Ismail Borazan, Gökhan Gündüz, Esra Ceylan, Sezgin Koray Gulsoy, Ayben Kılıç-Pekgözlü & Timucin Bardak

    https://link.springer.com/article/10.1007/s10570-022-04948-1

  135. 135
    Atmospheric pressure plasma jet treatment of PLA/PAni solutions: Enhanced morphology, improved yield of electrospun nanofibers and concomitant doping behaviour

    YongjianGuoaRoubaGhobeiraaZuxinSunbParisaShaliaRinoMorentaNathalieDe Geytera

    a
    Department of Applied Physics, Research Unit Plasma Technology (RUPT), Faculty of Engineering & Architecture, Ghent University, Sint-Pieterfaurea 41, B4, 9000, Ghent, Belgium
    b
    Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, Campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500, Kortrijk, Belgium
    https://www.sciencedirect.com/science/article/abs/pii/S0032386122009909
  136. 136
    Point-of-need quantitative detection of trihalomethanes in environmental water samples using a highly sensitive and selective fiber-based preconcentration system
    Hadi Rouhi, Colton Duprey, Clint Cook, Emily Linn, Sarah Veres, George Chen, Ali Alshaikh, Yang Lu, Leigh Terry, Mark Elliott, Evan K. Wujcik

    Hadi Rouhi and Colton Duprey contributed equally to this study.

    Funding information: Department of the Interior, Grant/Award Numbers: 20-WRC-207214-UA-Wujcik, G16AP00037; University of Alabama, Grant/Award Number: P200A180056; Research Experience for Undergraduates, Grant/Award Number: 1851974

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.53294

  137. 137
    Hybrid nanofibers opportunities and frontiers – A review
    Muzafar A.Kanjwal, Amal AlGhaferi
    Mechanical Engineering Department, Khalifa University, Abu Dhabi, United Arab Emirates

    Received 1 September 2022, Revised 20 October 2022, Accepted 22 October 2022, Available online 28 October 2022, Version of Record 30 October 2022.

    https://www.sciencedirect.com/science/article/abs/pii/S2213343722017237

  138. 138
    Fabrication and characterization as antibacterial effective wound dressing of hollow polylactic acid/polyurethane/silver nanoparticle nanofiber

    Sema Samatya Yilmaz & Ayse Aytac,

    Polymer Science and Technology Department, Kocaeli University, Kocaeli, Turkey,

    Engineering Faculty, Chemical Engineering Department, Kocaeli University, 41380, Izmit/Kocaeli, Turkey

    https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.18842

  139. 139
    Electrospun Ca3Co4-xO9+δ nanofibers and nanoribbons: Microstructure and thermoelectric properties

    Katharina Kruppa a*, Itzhak I. Maor b*, Frank Steinbach a, Vadim Beilin b, Meirav Mann-Lahav b, Mario Wolf a, Gideon S. Grader b,c**, Armin Feldhoff a***

    aInstitute of Physical Chemistry and Electrochemistry, Leibniz University Hannover, Callinstraße 3A, D-30167 Hannover, Germany

    bWolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel

    cGrand Technion Energy program (GTEP), Technion – Israel Institute of Technology, Haifa 32000, Israel

    https://ceramics.onlinelibrary.wiley.com/doi/10.1111/jace.18842

  140. 140
    The effect of electrospinning parameters on morphology and diameter of polyethylene terephthalate (PET) and recycled polyethylene terephthalate (r-PET) nanofibers

    Hüsnü Aydemir, Oğuz Demiryürek

    Vocational School of Technical Sciences, Textile Technology Division, Bingöl University,

    Engineering Faculty, Textile Engineering Department, Erciyes University

    https://www.tandfonline.com/doi/abs/10.1080/00405000.2022.2131341

  141. 141
    Electrochemical Properties of Coumarin 500 Encapsulated in a Liquid Crystal Guided Electrospun Fiber Core and Their Supercapacitor Application

    Atilla Eren MamukÇaǧdaş Koçak, Sema Aslan, and Derya Bal Altuntaş

    ACS Appl. Energy Mater.

    https://pubs.acs.org/doi/full/10.1021/acsaem.2c01287

  142. 142
    Understanding the effect of polymer concentrations on the phase formation and activity of electrospun nanofibrous photocatalyst
    Pooja P.Sarngan, Agasthiyaraj Lakshmanan, Abhijit Dutta, Debabrata Sarkar
    Applied NanoPhysics Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur 603203, India

    https://www.sciencedirect.com/science/article/abs/pii/S0927775722019379

  143. 143
    Direct Observation of Adhesion and Mechanical Behavior of a Single Poly(lactic-co-glycolic acid) (PLGA) Fiber Using an In Situ Technique for Tissue Engineering
    Lihua LouTanaji PaulBrandon A. AguiarTyler DolmetschCheng Zhang, and Arvind Agarwal*

    ACS Appl. Mater. Interfaces

    https://pubs.acs.org/doi/abs/10.1021/acsami.2c09665

  144. 144
    Producing Spinnable Regenerated Cellulosic Fibers from Palm Fibers for Use in the Textile Industry

    Shahad Ibrahim Omar Badr

    Leeds British Academy, Jeddah, Kingdom of Saudi Arabia.

    https://www.scirp.org/journal/paperinformation.aspx?paperid=119826

  145. 145
    In situ preparation and functionalization of nanofibers by a combination of electrospinning and click chemistry methods

    Kevser Ozdemir, Mehmet Atilla Tasdelen

    Department of Polymer Materials Engineering, Faculty of Engineering, Yalova

    https://link.springer.com/article/10.1007/s13726-022-01094-0

  146. 146
    Evaluation of In Vitro Bioactivity, Cytotoxicity, and Drug Release Behavior of Er2O3 and Tb2O3-Containing Bioactive Glass Particles and Nanofibers

    Begüm Rahman, Aylin M. Deliormanlı & Harika Atmaca

    Department of Metallurgical and Materials Engineering, Manisa Celal Bayar University, Yunusemre, Manisa, Turkey
    https://link.springer.com/article/10.1007/s10904-022-02373-2

  147. 147
    Lactose hydrolyzing activity of the lactase immobilized polycaprolactone and silk fibroin-based nanofiber and nitrocellulose membrane

    Sümeyye Yılmaz-Karaoğlu, Begüm-Gürel, Gökmen Tuğba Tunali-Akbaya

    Marmara University, Dentistry Faculty, Department of Basic Medical Sciences, Basibuyuk, Maltepe, İstanbul, Turkey.
    https://www.sciencedirect.com/science/article/abs/pii/S2212429222002875
  148. 148
    Design of a Mechanobioreactor to Apply Anisotropic, Biaxial Strain to Large Thin Biomaterials for Tissue Engineered Heart Valve Applications

    Edwin Wong, Shouka Parvin Nejad, Katya A. D’Costa, Nataly Machado Siqueira, Monica Lecce, J. Paul Santerre & Craig A. Simmons

    Translational Biology and Engineering Program, The Ted Rogers Centre for Heart Research, Toronto, Canada
    Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Canada
  149. 149
    Advances in plastic waste-derived carbon nanomaterial for supercapacitor applications: Trends, challenges and prospective

    Samit Kumar, Nayaka S.M. Saurabha, Abhijeet Kar, Bibhuti Bhusan Sahoo, Naresh Kumar Sahoo, Prasanta Kumar Sahoo

    Department of Mechanical Engineering, Siksha ‘O’ Anusandhan, Deemed to be University, Bhubneswar 751030, India
    Department of Chemistry, Environmental Science and Technology Program, Siksha ‘O’ Anusandhan, Deemed to be University, Bhubaneswar, Odisha 751030, India
  150. 150
    Electrospun fibers of liquid crystal mixtures

    Çağdaş Koçak, Atilla Eren Mamuk, Çiğdem Elif Demirci Dönmez & Mehmet Poyraz

    Liquid Crystals Laboratory, Department of Physics, Mugla Sitki Kocman University

  151. 151
    Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

    1Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes University, 38280 Kayseri, Turkey

    2Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, 06560 Ankara, Turkey

  152. 152
    In situ preparation of nanohydroxyapatite/alginate composites as additives to PVA electrospun fibers as new bone graft materials

    G.S.CorreiaabJ.S.A.FalcãocA.G.Castro NetodY.J.A.SilvaaL.T.B.MendonçaeA.O.S.BarrosfR.Santos-OliveirafW.M.de AzevedoagS.Alves JunioraeB.S.Santosah

    aMetal Mechanic Department, Federal Institution of Education, Science and Technology of Maranhão, 65030-005, São Luís, MA, Brazil

    c Education and Health Center, Federal University of Campina Grande, 58175-000, Cuité, PB, Brazil

    dMaurício de Nassau University Center, Unit Graças, 52011-000, Recife, PE, Brazil

    aGraduate Program in Materials Science, Federal University of Pernambuco, 50740-560, Recife, PE, Brazil
    eChemical Technology Department, Federal University of Maranhão, 65080-805, São Luís, MA, Brazil
    fBrazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of Novel Radiopharmaceuticals, Rio de Janeiro, RJ, Brazil
    agFundamental Department of Chemistry, Federal University of Pernambuco, Rare Earth Laboratory – BSTR, 50740-560, Recife, PE, Brazil
    aeChemical Technology Department, Federal University of Maranhão, 65080-805, São Luís, MA, Brazil
    ahPharmaceutical Sciences Department, Federal University of Pernambuco, 50740-520, Recife, PE, Brazil
  153. 153
    An investigation on structural, optical and magnetic properties of hard-soft SrFe12O19/(CoEu0.02Fe1.98O4)x nanofiber composites

    YassineSlimaniMunirah A.AlmessiereaSadikGunerAbdulhadiBaykalMuratSertkolFatimah S.AlahmaricEman M.AlsulamiIsmail A.Auwalf

    a Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    aDepartment of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    cDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia

    dInstitute of Inorganic Chemistry, RWTH Aachen University, 52074, Aachen, Germany

    eDeanship of Preparatory Year, Building 450, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
    cDepartment of Nanomedicine Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
    fDepartment of Chemistry, Sule Lamido University, Kafin Hausa 731, Nigeria
  154. 154
    Electrospun fibers as drying additive in cement-bonded alumina castables

    Enrico Storti,Cameliu Himcinschi,Marc Neumann,Jana Hubálková,Christos G. Aneziris

    aInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

    bInstitute of Theoretical Physics, TU Bergakademie Freiberg, Leipziger Straße 23, Freiberg, 09599 Germany

    cInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

    dInstitute of Ceramics, Refractories and Composite Materials, TU Bergakademie Freiberg, Agricolastraße 17, Freiberg, 09599 Germany

  155. 155
    Effect of nanofiber as nanopore maker agent on the performance of clinker bricks

    Cagrialp Arslana   Ismail Borazana  OsmanGencelb  ErtugrulErdogmusc  MucahitSutcud

    aBartin University, Faculty of Engineering, Architecture and Design, Department of Textile Engineering, 74100 Bartin, Turkey

    bBartin University, Faculty of Engineering, Architecture and Design, Department of Civil Engineering, 74100 Bartin, Turkey

    cBartin University, Faculty of Engineering, Architecture and Design, Department of Environmental Engineering, 74100 Bartin, Turkey

    dIzmir Katip Celebi University, Faculty of Engineering and Architecture, Department of Materials Science and Engineering, 35620 Izmir, Turkey

  156. 156
    Shape-Stable Composites of Electrospun Nonwoven Mats and Shear-Thickening Fluids

    Junli Hao, Jie Ding, and Gregory C. Rutledge

    1Department of Chemical Engineering, Massachusetts Institute of Technology

    2Land Division, Defense Science and Technology Group, Fishermans Bend VIC 3207, Australia

    3Department of Chemical Engineering, Massachusetts Institute of Technology

  157. 157
    Valorization of Waste Chicken Feathers: Fabrication and Characterization of Novel Keratin Nanofiber Conduits for Potential Application in Peripheral Nerve Regeneration

    Mduduzi Khumalo,1,2 Bruce Sithole,1,2 Tamrat Tesfaye,1,2,3 and Prabashni Lekha2

    1University of KwaZulu-Natal, Discipline of Chemical Engineering, Durban, South Africa

    2Biorefinery Industry Development Facility, Chemical Cluster, Council for Scientific and Industrial Research, Durban, South Africa

    3Ethiopian Institute of Textile and Fashion Technology, Bahir Dar University, Bahir Dar, Ethiopia

  158. 158
    Targeted delivery of sodium metabisulfite (SMBS) by pH-sensitive Eudragit L100-55 nanofibrous mats fabricated through advanced coaxial electrospinning

    Changning Yu, Quintin Litke, Qiao Li, Peng Lu, Shangxi Liu, Francis Diony, Joshua Gong, Chengbo Yang & Song Liu.

    Department of Biosystems Engineering, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, Canada.
  159. 159
    Electrospun poly(ω-pentadecalactone-co-ε-caprolactone)/gelatin/chitosan ternary nanofibers with antibacterial activity for treatment of skin infections
    Cansu Ulker Turan and Yuksel Guvenilir.
    Istanbul Technical University, Department of Chemical Engineering, Istanbul, Turkey
  160. 160
    Electrospinning of ampicillin trihydrate loaded PLA nanofibers: effect of drug concentration and PLGA addition on its morphology, drug delivery and mechanical properties
    Tuğba Eren Böncü and Nurten Ozdemir
    Faculty of Pharmacy, Department of Pharmaceutical Technology, Erciyes
    University, 38280 Kayseri, Turkey and 2 Faculty of Pharmacy, Department of
    Pharmaceutical Technology, Ankara University, 06560 Ankara, Turkey.
  161. 161
    Design, preparation and in vitro characterization of biomimetic and bioactive chitosan/polyethylene oxide based nanofibers as wound dressings
  162. 162
    Electrospinning of Polyepychlorhydrin and Polyacrylonitrile Anionic Exchange Membranes for Reverse Electrodialysis
    José A. Reyes-Aguilera, Liliana Villafaña-López, Elva C. Rentería-Martínez, Sean M. Anderson and Jesús S. Jaime-Ferrer.
    https://www.mdpi.com/journal/membranes
  163. 163
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    Core/Shell Glycine-Polyvinyl Alcohol/Polycaprolactone Nanofibrous Membrane Intended for Guided Bone Regeneration: Development and Characterization
    Marwa Alazzawi, Nabeel Kadim Abid Alsahib and Hilal Turkoglu Sasmazel.
  164. 164
    Layer-By-Layer Assembled, Amphiphilic And Antibacterial Hybrid Electrospun Mat Made From Polypropylene And Chitosan Fibers
  165. 165
    Optimization of Electrospinning Parameters for Poly (Vinyl Alcohol) and Glycine Electrospun Nanofibers
  166. 166
    Optimization of functionalized electrospun fibers for the development of colorimetric oxygen indicator as an intelligent food packaging system
  167. 167
    Co-electrospun-electrosprayed PVA/folic acid nanofibers for transdermal drug delivery: Preparation, characterization, and in vitro cytocompatibility
    Fatma Nur Parin, Cigdem Inci Aydemir, Gokce Taner, Kenan Yildirim
    Bursa Technical University
  168. 168
    Engineering multifunctional bactericidal nanofibers for abdominal hernia repair
    Anderson Oliveira Lobo, Samson Afewerki
    Harvard Medical School
  169. 169
    An electrochemical immunosensor modified with titanium IV oxide/polyacrylonitrile nanofibers for the determination of carcino embriyonic antigen
  170. 170
    Polycaprolactone/silk fibroin electrospun nanofibers‐based lateral flow test strip for quick and facile determination of bisphenol A in breast milk
    Begüm Gürel‐Gökmen, Hava Dudu Taslak, Ozan Özcan, Necla İpar, Tuğba Tunali‐Akbay
    Marmara University
  171. 171
    Electrospinning of ampicillin trihydrate loaded electrospun PLA nanofibers I: effect of polymer concentration and PCL addition on its morphology, drug delivery and mechanical properties
    Tugba Eren Boncu, Nurten Ozdemir
    Ankara University
  172. 172
    Preparation of Silver Cyclohexane di Carboxylate: Β-cyclodextrin Inclusion Complexes and Their Use in the Production of Poly(vinyl alcohol) Nanowebs
    Rıza ATAV, Aylin YILDIZ, Derman VATANSEVER BAYRAMOL, Ahmet Özgür AĞIRGAN , Uğur ERGÜNAY
    Tekirdağ Namık Kemal University
  173. 173
    Holistic Investigation of the Electrospinning Parameters for High Percentage of β-phase in PVDF Nanofibers
    Rahul Kumar Singh, Sun Woh Lye, Jianmin Miao
    Nanyang Technological University, Singapore
  174. 174
    Design and fabrication of nano-engineered electrospun filter media with cellulose nanocrystal for toluene adsorption from indoor air
    Esra Buyukada-Kesici, Elifnur Gezmis-Yavuz, Dila Aydina, Elif Cansoy, Kadir Alp, Derya Y.Koseoglu-Imer
  175. 175
    Biocomposite scaffolds for 3D cell culture: Propolis enriched polyvinyl alcohol nanofibers favoring cell adhesion
    Rumeysa Bilginer, Dilce Ozkendir‐Inanc, Umit Hakan Yildiz, Ahu Arslan‐Yildiz

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.50287

  176. 176
    Electrospun core-sheath PAN@ PPY nanofibers decorated with ZnO: photo-induced water decontamination enhanced by formation of a heterojunction
    G Capilli, P Calza, C Minero, M Cerruti.  McGill University

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  177. 177
    Dual electrospinning of a nanocomposites biofilm: Potential use as an antimicrobial barrier
    Judith Vergara-Figueroa, Serguei Alejandro-Martin, Fabiola Cerda-Leal, William Gacitúa. Universidad del Bío-Bío

    https://www.sciencedirect.com/science/article/abs/pii/S2352492820326829

  178. 178
    Helicoidally Arranged Polyacrylonitrile Fiber-Reinforced Strong and Impact-Resistant Thin Polyvinyl Alcohol Film Enabled by Electrospinning-Based Additive Manufacturing
    Rahul Sahay , Komal Agarwal, Anbazhagan Subramani , Nagarajan Raghavan

    https://scholar.google.com.tr/scholar_url?url=https://www.mdpi.com/2073-4360/12/10/2376/pdf&hl=tr&sa=X&d=15229915842923991540&ei=HfiNX_izGIy0ygT3m6bYBw&scisig=AAGBfm2QTPnRcmJgdY7WJqhwO9OTLvnGXA&nossl=1&oi=scholaralrt&hist=NSAhIeoAAAAJ:16172062561605054270:AAGBfm0NgWrUaFisOH1m3cVrJiuKCbAA7g&html=

  179. 179
    Combinatorial effects of coral addition and plasma treatment on the properties of chitosan/polyethylene oxide nanofibers intended for bone tissue engineering
    Parinaz Saadat, Esbah Tabaei, Mahtab Asadian, Rouba Ghobeira

    https://www.sciencedirect.com/science/article/abs/pii/S0144861720313849

  180. 180
    Functional polymer nanofibers: from spinning fabrication techniques to recent biomedical applications
    Danilo Martins dos Santos, Daniel S. Corrêa, Eliton S Medeiros, Juliano Oliveira, and LUIZ Henrique C. MATTOSO

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12410

  181. 181
    Composite Membranes with Nanofibrous Cross-hatched Supports for Reverse Osmosis Desalination
    Seungju Kim , Daniel E. Heath, and Sandra E. Kentish

    https://pubs.acs.org/doi/abs/10.1021/acsami.0c12588

  182. 182
    A Bimodal Protein Fabric Enabled via In-Situ Diffusion for High-Performance Air Filtration
  183. 183
    THE DEVELOPMENT AND OPTIMIZATION OF FLUORESCENT SENSORS FOR CONTINUOUS MONITORING OF PHYSIOLOGICAL MOLECULES IN VIVO
  184. 184
    Green seaweeds ulvan-cellulose scaffolds enhance in vitro cell growth and in vivo angiogenesis for skin tissue engineering
    Koushanee Madub Nowsheen Goonoo Fanny Gimié Imade Ait Arsa HolgerSchönherr Archana Bhaw-Luximon

    https://www.sciencedirect.com/science/article/pii/S014486172031198X

  185. 185
    Preparation, characterization and antimicrobial activity evaluation of electrospun PCL nanofiber composites of resveratrol nanocrystals
  186. 186
    Electrospinning of PLA and PLA/POSS nanofibers: Use of Taguchi optimization for process parameters
  187. 187
    Centella Asiatica Extract Containing Bilayered Electrospun Wound Dressing
    Ismail Alper Isoglu & Nuray Koc

    https://link.springer.com/article/10.1007/s12221-020-9956-y

  188. 188
    Heterogeneous PVC cation-exchange membrane synthesis by electrospinning for reverse electrodialysis
    JS Jaime-Ferrer, M Mosqueda-Quintero

    https://www.degruyter.com/view/journals/ijcre/ahead-of-print/article-10.1515-ijcre-2020-0020/article-10.1515-ijcre-2020-0020.xml

  189. 189
    Electrochemical evaluation of Titanium (IV) Oxide/Polyacrylonitrile electrospun discharged battery coals as supercapacitor electrodes
    Sema Aslan, Derya Bal Altuntaş, Çağdaş Koçak, Hülya Kara Subaşat

    https://onlinelibrary.wiley.com/doi/abs/10.1002/elan.202060239

  190. 190
    Progress in the design and development of “fast-dissolving” electrospun nanofibers based drug delivery systems - A systematic review
    Brabu Balusamy, Asli Celebioglu, Anitha Senthamizhan, Tamer Uyar

    https://www.sciencedirect.com/science/article/abs/pii/S0168365920304223

  191. 191
    Stabilizing 3 nm-Pt nanoparticles in close proximity on rutile nanorods-decorated-TiO2 nanofibers by improving support uniformity for catalytic reactions
    Wanlin Fu, Zhihui Li, Yunpeng Wang, Yueming Sun, Yunqian Dai. Southeast University, Nanjing.

    https://www.sciencedirect.com/science/article/abs/pii/S1385894720321410#!

  192. 192
    Photoluminescence Properties of a New Sm(III) Complex/PMMA Electrospun Composite Fibers
    Hulya Kara, Gorkem Oylumluoglu & Mustafa Burak Coban. Balikesir University.

    https://link.springer.com/article/10.1007/s10876-019-01677-7

  193. 193
    Optimization of the electrospinning process variables for gelatin/silver nanoparticles/bioactive glass nanocomposites for bone tissue engineering
    Aysen Akturk, Melek Erol Taygun, Gultekin Goller Istanbul Technical University Scientific Research Projects Foundation, Grant/Award Number: 38881

    https://onlinelibrary.wiley.com/doi/abs/10.1002/pc.25545

  194. 194
    Preparation And Characterization Of Polyvinyl Borate/Polyvinyl Alcohol (PVB/PVA) Blend Nanofibers

    Koysuren, O., Karaman, M. and Dinc, H. (2012), Preparation and characterization of polyvinyl borate/polyvinyl alcohol (PVB/PVA) blend nanofibers. J. Appl. Polym. Sci., 124: 2736–2741. doi:10.1002/app.35035

    (http://onlinelibrary.wiley.com/doi/10.1002/app.35035/full)

  195. 195
    The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process

    Öteyaka, M. O., Özel, E., Yıldırım, M. M., Aslan, M. H., Oral, A. Y., Özer, M., & Çaglar, S. H. (2011). The Effects of Power and Feeding Rate on Production of Polyurethane Nanofiber with Electrospinning Process. doi:10.1063/1.3663116

    (https://aip.scitation.org/doi/abs/10.1063/1.3663116)

  196. 196
    Initiated Chemical Vapor Deposition Of Ph Responsive Poly(2-Diisopropylamino)Ethyl Methacrylate Thin Films

    Mustafa Karaman, Nihat Çabuk, Initiated chemical vapor deposition of pH responsive poly(2-diisopropylamino)ethyl methacrylate thin films, Thin Solid Films, Volume 520, Issue 21, 31 August 2012, Pages 6484-6488, ISSN 0040-6090, http://dx.doi.org/10.1016/j.tsf.2012.06.083

    (http://www.sciencedirect.com/science/article/pii/S0040609012008140)

  197. 197
    Sıcak Filament Destekli Kimyasal Buhar Biriktirme Yöntemi İle Süper Su İtici Nano Kaplama Sentezi

    Çabuk, N. (2012). Sıcak filament destekli kimyasal buhar biriktirme yöntemi ile süper su itici nano kaplama sentezi (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1151)

  198. 198
    Preparation And Characterization Of Polyvinyl Alcohol/Carbon Nanotube (PVA/CNT) Conductive Nanofibers

    Köysüren, O. (2012). Preparation and characterization of polyvinyl alcohol/carbon nanotube (PVA/CNT) conductive nanofibers. Journal of Polymer Engineering, 32(6-7), pp. 407-413. Retrieved 29 Apr. 2016, from doi:10.1515/polyeng-2012-0068

    (http://www.degruyter.com/view/j/polyeng.2012.32.issue-6-7/polyeng-2012-0068/polyeng-2012-0068.xml)

  199. 199
    The development and design of fluorescent sensors for continuous in vivo glucose monitoring

    Balaconis, Mary K., “The development and design of fluorescent sensors for continuous in vivo glucose monitoring” (2014). Mechanical Engineering Dissertations. Paper 54.

    (http://hdl.handle.net/2047/d20004844)

  200. 200
    Effects of different sterilization methods on polyester surfaces

    Duzyer, Sebnem & Koral Koç, Serpil & Hockenberger, Asli & Evke, Elif & Kahveci, Zeynep & Uguz, Agah. (2013). Effects of different sterilization methods on polyester surfaces. Tekstil ve Konfeksiyon. 23. 319-324.

    (https://www.researchgate.net/publication/272672175_Effects_of_different_sterilization_methods_on_polyester_surfaces)

  201. 201
    Polymer Nanofibers: Building Blocks for Nanotechnology

    Pisignano, D. (2013). Polymer nanofibers: building blocks for nanotechnology. Cambridge: Royal Society of Chemistry.

    (https://books.google.com.tr/books?id=BnQoDwAAQBAJ&hl=tr)

  202. 202
    Affecting Parameters On Electrospinning Process And Characterization Of Electrospun Gelatin Nanofibers

    Nagihan Okutan, Pınar Terzi, Filiz Altay, Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers, Food Hydrocolloids, Volume 39, August 2014, Pages 19-26, ISSN 0268-005X, http://dx.doi.org/10.1016/j.foodhyd.2013.12.022.

    (http://www.sciencedirect.com/science/article/pii/S0268005X13004062)

  203. 203
    Design Of A Novel Nozzle Prototype For Increased Productivity And Improved Coating Quality During Electrospinning

    UCAR, Nuray; UCAR, Mehmet; KIZILDAĞ, Nuray. DESIGN OF A NOVEL NOZZLE PROTOTYPE FOR INCREASED PRODUCTIVITY AND IMPROVED COATING QUALITY DURING ELECTROSPINNING. Journal of Textile & Apparel/Tekstil ve Konfeksiyon, 2013, 23.3.

    (https://www.researchgate.net/publication/293543273_DESIGN_OF_A_NOVEL_NOZZLE_PROTOTYPE_FOR_INCREASE_PRODUCTIVITY_AND_IMPROVED_COATING_QUALITY_DURING_ELECTROSPINNING)

  204. 204
    Electrospun Polyvinyl Borate/Poly(Methyl Methacrylate) (PVB/PMMA) Blend Nanofibers

    Koysuren, O., Karaman, M., Yildiz, H. B., Koysuren, H. N., & Dinç, H. (2014). Electrospun polyvinyl borate/poly (methyl methacrylate)(PVB/PMMA) blend nanofibers. International Journal of Polymeric Materials and Polymeric Biomaterials, 63(7), 337-341.

    (http://www.tandfonline.com/doi/abs/10.1080/00914037.2013.845188)

  205. 205
    Industrial Upscaling of Electrospinning and Applications of Polymer Nanofibers: A Review

    Persano, L., Camposeo, A., Tekmen, C., & Pisignano, D. (2013). Industrial upscaling of electrospinning and applications of polymer nanofibers: a review.Macromolecular Materials and Engineering, 298(5), 504-520.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201200290/full)

  206. 206
    Template Assisted Synthesis Of Photocatalytic Titanium Dioxide Nanotubes By Hot Filament Chemical Vapor Deposition Method

    Mustafa Karaman, Fatma Sarıipek, Özcan Köysüren, H. Bekir Yıldız, Template assisted synthesis of photocatalytic titanium dioxide nanotubes by hot filament chemical vapor deposition method, Applied Surface Science, Volume 283, 15 October 2013, Pages 993-998, ISSN 0169-4332, http://dx.doi.org/10.1016/j.apsusc.2013.07.058.

    (http://www.sciencedirect.com/science/article/pii/S016943321301369X)

  207. 207
    UV Illumination Effects On Electrical Characteristics Of Metal–Polymer–Semiconductor Diodes Fabricated With New Poly(Propylene Glycol)-B-Polystyrene Block Copolymer

    Gökçen, M. Yıldırım, A. Demir, A. Allı, S. Allı, B. Hazer, UV illumination effects on electrical characteristics of metal–polymer–semiconductor diodes fabricated with new poly(propylene glycol)-b-polystyrene block copolymer, Composites Part B: Engineering, Volume 57, February 2014, Pages 8-12, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.09.038.

    (http://www.sciencedirect.com/science/article/pii/S1359836813005519)

  208. 208
    Experimental Study on Relationship of Applied Power And Feeding Rate on Production of Polyurethane Nanofibre

    Oteyaka, M., Ozel, E., & Yıldırım, M. (2014). Experimental Study On Relationship Of Applied Power And Feeding Rate On Production Of Polyurethane Nanofibre. Gazı Unıversıty Journal Of Scıence, 26(4), 611-618.

    (http://gujs.gazi.edu.tr/article/view/1060000855)

  209. 209
    Electrospun Fibers For Vaginal Anti-HIV Drug Delivery

    Anna K. Blakney, Cameron Ball, Emily A. Krogstad, Kim A. Woodrow, Electrospun fibers for vaginal anti-HIV drug delivery, Antiviral Research, Volume 100, Supplement, December 2013, Pages S9-S16, ISSN 0166-3542, http://dx.doi.org/10.1016/j.antiviral.2013.09.022.

    (http://www.sciencedirect.com/science/article/pii/S0166354213002829)

  210. 210
    Polivinil Borat Sentezin ; Elektrospin Yöntemiyle Nanofiber Hazırlanması Ve Karakterizasyonu

    Dinç, H. (2013). Polivinil borat sentezin; elektrospin yöntemiyle nanofiber hazırlanması ve karakterizasyonu (Doctoral dissertation, Selçuk Üniversitesi Fen Bilimleri Enstitüsü).

    (http://acikerisim.selcuk.edu.tr:8080/xmlui/handle/123456789/1158)

  211. 211
    Commercial Viability Analysis of Lignin Based Carbon Fibre

    Chen, M.C. (2014). Commercial Viability Analysis of Lignin Based Carbon Fibre.

    (https://core.ac.uk/download/pdf/56378549.pdf)

  212. 212
    Electrospun Antibacterial Nanofibers: Production, Activity, And In Vivo Applications

    Gao, Y., Bach Truong, Y., Zhu, Y. and Louis Kyratzis, I. (2014), Electrospun antibacterial nanofibers: Production, activity, and in vivo applications. J. Appl. Polym. Sci., 131, 40797, doi: 10.1002/app.40797

    (http://onlinelibrary.wiley.com/doi/10.1002/app.40797/full)

  213. 213
    Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions

    Balaconis, M. K., Luo, Y., & Clark, H. A. (2015). Glucose-sensitive nanofiber scaffolds with an improved sensing design for physiological conditions. The Analyst, 140(3), 716–723. doi:10.1039/c4an01775g

    (https://pubs.rsc.org/en/content/articlelanding/2015/AN/C4AN01775G#!divAbstract)

  214. 214
    Utilization Of Electrospun Nanofibers Containing Gelatin Or Gelatin-cellulose Acetate For Preventing Syneresis In Tomato Ketchup

    Hendessi, S. (2014). Jelatın Veya Jelatın-selüloz Asetat İçeren Nanoliflerin Domates Ketçaplarında Sineresisi Önleyici Olarak Kullanılması (Doctoral dissertation, Fen Bilimleri Enstitüsü).

    (http://hdl.handle.net/11527/2193)

  215. 215
    Thermal Conductivity Of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (http://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d#!divAbstract)

  216. 216
    Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs

    Enis, I. Y., Vojtech, J., & Sadikoglu, T. G. (2015). Chloroform-Formic Acid Solvent Systems for Nanofibrous Polycaprolactone Webs. World Academy of Science, Engineering and Technology, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering, 9(5), 429-432.

    (http://www.waset.org/publications/10001167)

  217. 217
    Preparation And In Vitro Characterization Of Electrospun 45S5 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation and in vitro characterization of electrospun 45S5 bioactive glass nanofibers, Ceramics International, Volume 41, Issue 1, Part A, January 2015, Pages 417-425, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2014.08.086.

    (http://www.sciencedirect.com/science/article/pii/S0272884214013236)

  218. 218
    Towards Scalable Binderless Electrodes: Carbon Coated Silicon Nanofiber Paper via Mg Reduction of Electrospun SiO2 Nanofibers

    Favors, Z., Bay, H. H., Mutlu, Z., Ahmed, K., Ionescu, R., Ye, R., … & Ozkan, C. S. (2015). Towards scalable binderless electrodes: carbon coated silicon nanofiber paper via Mg reduction of electrospun SiO2 nanofibers. Scientific reports, 5.

    (http://www.nature.com/articles/srep08246?message-global=remove&WT.ec_id=SREP-639-20150210)

  219. 219
    Cellulose Acetate–Poly(N-isopropylacrylamide)-Based Functional Surfaces with Temperature-Triggered Switchable Wettability

    Ganesh, V. A., Ranganath, A. S., Sridhar, R., Raut, H. K., Jayaraman, S., Sahay, R., … & Baji, A. (2015). Cellulose Acetate–Poly (N‐isopropylacrylamide)‐Based Functional Surfaces with Temperature‐Triggered Switchable Wettability. Macromolecular rapid communications, 36(14), 1368-1373.

    (http://onlinelibrary.wiley.com/doi/10.1002/marc.201500037/abstract?userIsAuthenticated=false&deniedAccessCustomisedMessage=)

  220. 220
    Electrospinning Of Nanofibrous Polycaprolactone (PCL) And Collagen-Blended Polycaprolactone For Wound Dressing And Tissue Engineering

    Zeybek, B., Duman, M., & Ürkmez, A. S. (2014). Electrospinning of nanofibrous polycaprolactone (PCL) and collagen-blended polycaprolactone for wound dressing and tissue engineering. Usak University Journal of Material Sciences, 3(1), 121.

    (http://search.proquest.com/openview/ecfe94e89a75c0739c7fd72ba51bf90f/1?pq-origsite=gscholar)

  221. 221
    Phosphine-Functionalized Electrospun Poly(Vinyl Alcohol)/Silica Nanofibers As Highly Effective Adsorbent For Removal Of Aqueous Manganese And Nickel Ions

    Md. Shahidul Islam, Md. Saifur Rahaman, Jeong Hyun Yeum, Phosphine-functionalized electrospun poly(vinyl alcohol)/silica nanofibers as highly effective adsorbent for removal of aqueous manganese and nickel ions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 484, 5 November 2015, Pages 9-18, ISSN 0927-7757, http://dx.doi.org/10.1016/j.colsurfa.2015.07.023.

    (http://www.sciencedirect.com/science/article/pii/S092777571530100X)

  222. 222
    Free-Standing Ni–Nio Nanofiber Cloth Anode For High Capacity And High Rate Li-Ion Batteries

    Jeffrey Bell, Rachel Ye, Kazi Ahmed, Chueh Liu, Mihrimah Ozkan, Cengiz S. Ozkan, Free-standing Ni–NiO nanofiber cloth anode for high capacity and high rate Li-ion batteries, Nano Energy, Volume 18, November 2015, Pages 47-56, ISSN 2211-2855, http://dx.doi.org/10.1016/j.nanoen.2015.09.013.

    (http://www.sciencedirect.com/science/article/pii/S2211285515003742)

  223. 223
    Coaxial Electrospinning Of WO3 Nanotubes Functionalized With Bio-İnspired Pd Catalysts And Their Superior Hydrogen Sensing Performance

    Choi, S. J., Chattopadhyay, S., Kim, J. J., Kim, S. J., Tuller, H. L., Rutledge, G. C., & Kim, I. D. (2016). Coaxial electrospinning of WO 3 nanotubes functionalized with bio-inspired Pd catalysts and their superior hydrogen sensing performance. Nanoscale.

    (http://pubs.rsc.org/is/content/articlelanding/2016/nr/c5nr06611e/unauth#!divAbstract)

  224. 224
    Electrospun Cerium And Gallium-Containing Silicate Based 13-93 Bioactive Glass Fibers For Biomedical Applications

    Aylin M. Deliormanlı, Electrospun cerium and gallium-containing silicate based 13-93 bioactive glass fibers for biomedical applications, Ceramics International, Volume 42, Issue 1, Part A, January 2016, Pages 897-906, ISSN 0272-8842, http://dx.doi.org/10.1016/j.ceramint.2015.09.016.

    (http://www.sciencedirect.com/science/article/pii/S0272884215017241)

  225. 225
    Electrospun Polyvinyl Alcohol/ Pluronic F127 Blended Nanofibers Containing Titanium Dioxide For Antibacterial Wound Dressing

    El-Aassar, M. R., El-Deeb, N. M., Hassan, H. S., & Mo, X. (2015). Electrospun Polyvinyl Alcohol/Pluronic F127 Blended Nanofibers Containing Titanium Dioxide for Antibacterial Wound Dressing. Applied biochemistry and biotechnology, 1-15.

    (http://link.springer.com/article/10.1007/s12010-015-1962-y)

  226. 226
    Preparation, In Vitro Mineralization And Osteoblast Cell Response Of Electrospun 13–93 Bioactive Glass Nanofibers

    Aylin M. Deliormanlı, Preparation, in vitro mineralization and osteoblast cell response of electrospun 13–93 bioactive glass nanofibers, Materials Science and Engineering: C, Volume 53, 1 August 2015, Pages 262-271, ISSN 0928-4931, http://dx.doi.org/10.1016/j.msec.2015.04.037.

    (http://www.sciencedirect.com/science/article/pii/S0928493115300394)

  227. 227
    Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions

    Guclu, S., Pasaoglu, M. E., & Koyuncu, I. (2015). Membrane manufacturing via simultaneous electrospinning of PAN and PSU solutions. Desalination and Water Treatment, 1-9.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2015.1024747)

  228. 228
    Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering

    Ogunlaja, A. S., & Tshentu, Z. R. (2015). Molecularly Imprinted Polymer Nanofibers for Adsorptive Desulfurization. Applying Nanotechnology to the Desulfurization Process in Petroleum Engineering, 281.

    (https://books.google.com.tr/books?hl=tr&lr=&id=oGa2CgAAQBAJ&oi=fnd&pg=PA281&dq=inovenso&ots=D8gIXZpcRB&sig=V_3qD1gM2EfbBpWrKSkxMgXhGGA&redir_esc=y#v=onepage&q=inovenso&f=false)

  229. 229
    Investigation of wettability and moisture sorption property of electrospun poly(N-isopropylacrylamide) nanofibers

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. Investigation of wettability and moisture sorption property of electrospun poly (N-isopropylacrylamide) nanofibers. MRS Advances, 1-6.

    (http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=10198457&fileId=S205985211600164X)

  230. 230
    Alternative Solvent Systems For Polycaprolactone Nanowebs Via Electrospinning

    Ipek Y Enis, Jakub Vojtech, and Telem G Sadikoglu, Alternative solvent systems for polycaprolactone nanowebs via electrospinning, Journal of Industrial Textiles 1528083716634032, first published on February 17, 2016 doi:10.1177/1528083716634032

    (http://jit.sagepub.com/content/early/2016/02/17/1528083716634032.abstract)

  231. 231
    Controlled Release Of A Hydrophilic Drug From Coaxially Electrospun Polycaprolactone Nanofibers

    Zahida Sultanova, Gizem Kaleli, Gözde Kabay, Mehmet Mutlu, Controlled release of a hydrophilic drug from coaxially electrospun polycaprolactone nanofibers, International Journal of Pharmaceutics, Volume 505, Issues 1–2, 30 May 2016, Pages 133-138, ISSN 0378-5173, http://dx.doi.org/10.1016/j.ijpharm.2016.03.032.

    (http://www.sciencedirect.com/science/article/pii/S0378517316302320)

  232. 232
    Recent Developments In Micro- And Nanofabrication Techniques For The Preparation Of Amorphous Pharmaceutical Dosage Forms

    Sheng Qi, Duncan Craig, Recent developments in micro- and nanofabrication techniques for the preparation of amorphous pharmaceutical dosage forms, Advanced Drug Delivery Reviews, Available online 9 January 2016, ISSN 0169-409X, http://dx.doi.org/10.1016/j.addr.2016.01.003.

    (http://www.sciencedirect.com/science/article/pii/S0169409X16300059)

  233. 233
    Fabrication Of Electrospun Nanofiber Catalysts And Ammonia Borane Hydrogen Release Efficiency

    Bilge Coşkuner Filiz, Aysel Kantürk Figen, Fabrication of electrospun nanofiber catalysts and ammonia borane hydrogen release efficiency, International Journal of Hydrogen Energy, Available online 18 April 2016, ISSN 0360-3199, http://dx.doi.org/10.1016/j.ijhydene.2016.03.182.

    (http://www.sciencedirect.com/science/article/pii/S0360319915318632)

  234. 234
    Enhancement Of Mechanical And Physical Properties Of Electrospun PAN Nanofiber Membranes Using PVDF Particles

    Elkhaldi, R. M., Guclu, S., & Koyuncu, I. (2016). Enhancement of mechanical and physical properties of electrospun PAN nanofiber membranes using PVDF particles. Desalination and Water Treatment, 1-11.

    (http://www.tandfonline.com/doi/abs/10.1080/19443994.2016.1159253)

  235. 235
    Proposal Of A Framework For Scale-Up Life Cycle Inventory: A Case Of Nanofibers For Lithium Iron Phosphate Cathode Applications

    Simon, B., Bachtin, K., Kiliç, A., Amor, B., & Weil, M. (2016). Proposal of a framework for scale‐up life cycle inventory: A case of nanofibers for lithium iron phosphate cathode applications. Integrated Environmental Assessment and Management. doi: [10.1002/ieam.1788].

    (http://onlinelibrary.wiley.com/doi/10.1002/ieam.1788/abstract)

  236. 236
    Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation

    Ganesh, V. A., Ranganath, A. S., Baji, A., Wong, H. C., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Electrospun Differential Wetting Membranes for Efficient Oil–Water Separation. Macromolecular Materials and Engineering.

    (http://onlinelibrary.wiley.com/doi/10.1002/mame.201600074/abstract)

  237. 237
    On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength

    Sahay, R., Parveen, H., Ranganath, A. S., Ganesh, V. A., & Baji, A. (2016). On the adhesion of hierarchical electrospun fibrous structures and prediction of their pull-off strength. RSC Advances, 6(53), 47883–47889. doi:10.1039/c6ra05757h

    (https://pubs.rsc.org/en/content/articlelanding/2016/RA/c6ra05757h#!divAbstract)

  238. 238
    Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design

    Gönen, S. Ö., Erol Taygun, M., Aktürk, A., & Küçükbayrak, S. (2016). Fabrication of nanocomposite mat through incorporating bioactive glass particles into gelatin/poly(ε-caprolactone) nanofibers by using Box–Behnken design. Materials Science and Engineering: C, 67, 684–693. doi:10.1016/j.msec.2016.05.065

    (https://www.sciencedirect.com/science/article/pii/S0928493116304982)

  239. 239
    Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing

    Mabrouk, M., Choonara, Y. E., Marimuthu, T., Kumar, P., du Toit, L. C., van Vuuren, S., & Pillay, V. (2016). Ca3(PO4)2 precipitated layering of an in situ hybridized PVA/Ca2O4Si nanofibrous antibacterial wound dressing. International Journal of Pharmaceutics, 507(1-2), 41–49. doi:10.1016/j.ijpharm.2016.05.011

    (https://www.sciencedirect.com/science/article/pii/S0378517316303751?via%3Dihub)

  240. 240
    Fabrication of protein scaffold by electrospin coating for artificial tissue

    Ozcan, F., Ertul, S., & Maltas, E. (2016). Fabrication of protein scaffold by electrospin coating for artificial tissue. Materials Letters, 182, 359–362. doi:10.1016/j.matlet.2016.07.010

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X16311065)

  241. 241
    Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing

    Di, W., Czarny, R. S., Fletcher, N. A., Krebs, M. D., & Clark, H. A. (2016). Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing. Pharmaceutical Research, 33(10), 2433–2444. doi:10.1007/s11095-016-1987-0

    (https://link.springer.com/article/10.1007/s11095-016-1987-0)

  242. 242
    Preparation and characterization of electrospun nanofibers containing glutamine

    Tort, S., & Acartürk, F. (2016). Preparation and characterization of electrospun nanofibers containing glutamine. Carbohydrate Polymers, 152, 802–814. doi:10.1016/j.carbpol.2016.07.028

    (https://www.sciencedirect.com/science/article/pii/S0144861716308177)

  243. 243
    Yapılı Poli(Akrilonitril-Vinil Asetat)/Grafen Oksit Yapıların Karakterizasyonu

    TİYEK, İ , YAZICI, M , ALMA, M , DÖNMEZ, U , YILDIRIM, B , SALAN, T , URUŞ, S , KARATAŞ, Ş , KARTERİ, İ . (2016). Nanolif Yapılı Poli (Akrilonitril-Vinil Asetat)/ Grafen Oksit Yapıların Karakterizasyonu. Tekstil ve Mühendis, 23 (102), 0-0.

    (https://dergipark.org.tr/teksmuh/issue/24718/261437)

  244. 244
    Durable adhesives based on electrospun poly(vinylidene fluoride) fibers

    Sahay, R., Baji, A., Ranganath, A. S., & Anand Ganesh, V. (2016). Durable adhesives based on electrospun poly(vinylidene fluoride) fibers. Journal of Applied Polymer Science, 134(2). doi:10.1002/app.44393

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.44393)

  245. 245
    Electrospinning—Commercial Applications, Challenges and Opportunities

    Kannan, B., Cha, H., & Hosie, I. C. (2016). Electrospinning—Commercial Applications, Challenges and Opportunities. Nano-Size Polymers, 309–342. doi:10.1007/978-3-319-39715-3_11

    (https://link.springer.com/chapter/10.1007/978-3-319-39715-3_11)

  246. 246
    US20160274030A1 Compositions and methods for measurement of analytes

    Northeastern University, Boston, MA(US) (2016). Compositions and methods for measurement of analytes. US20160274030A1.

    (https://patents.google.com/patent/US20160274030A1/en)

  247. 247
    Effect Of Ethylene Oxide, Autoclave and Ultra Violet Sterilizations On Surface Topography Of Pet Electrospun Fibers

    Sebnem DUZYER [1], Asli HOCKENBERGER [2], Agah UGUZ [3], Elif EVKE [4], ZeynepKAHVECİ [5]. 358 412. Uludağ University Journal of The Faculty of Engineering, 21 (2), 201-218. DOI: 10.17482/uujfe.04230

    (https://doi.org/10.17482/uujfe.04230)

  248. 248
    Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications

    Sahay, R., Parveen, H., Baji, A., Ganesh, V. A., & Ranganath, A. S. (2016). Fabrication of PVDF hierarchical fibrillar structures using electrospinning for dry-adhesive applications. Journal of Materials Science, 52(5), 2435–2441. doi:10.1007/s10853-016-0537-9

    (https://link.springer.com/article/10.1007/s10853-016-0537-9)

  249. 249
    Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications

    Deliormanlı, A. M. (2017). Investigation of in vitro mineralization of silicate-based 45S5 and 13-93 bioactive glasses in artificial saliva for dental applications. Ceramics International, 43(4), 3531–3539. doi:10.1016/j.ceramint.2016.11.078

    (https://www.sciencedirect.com/science/article/pii/S0272884216320697)

  250. 250
    Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications

    Ganesh, V. A., Ranganath, A. S., Baji, A., Raut, H. K., Sahay, R., & Ramakrishna, S. (2016). Hierarchical Structured Electrospun Nanofibers for Improved Fog Harvesting Applications. Macromolecular Materials and Engineering, 302(2), 1600387. doi:10.1002/mame.201600387

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201600387)

  251. 251
    A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability

    İspirli Doğaç, Y., Deveci, İ., Mercimek, B., & Teke, M. (2017). A comparative study for lipase immobilization onto alginate based composite electrospun nanofibers with effective and enhanced stability. International Journal of Biological Macromolecules, 96, 302–311. doi:10.1016/j.ijbiomac.2016.11.120

    (https://www.sciencedirect.com/science/article/pii/S0141813016319572)

  252. 252
    Crystallisation of amorphous fenofibrate and potential of the polymer blend electrospun matrices to stabilise in its amorphous form

    Tipduangta, P. (2016). Retrieved from https://ueaeprints.uea.ac.uk/61721/

    (https://ueaeprints.uea.ac.uk/61721/)

  253. 253
    Smartphone-based detection of dyes in water for environmental sustainability

    Smartphone-based detection of dyes in water for environmental sustainability. Analytical Methods, 9(4), 579–585. doi:10.1039/c6ay03073d

    (https://pubs.rsc.org/en/content/articlelanding/2016/ay/c6ay03073d/unauth#!divAbstract)

  254. 254
    Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications

    Kolbuk, D. (2016). Tailoring of Architecture and Intrinsic Structure of Electrospun Nanofibers by Process Parameters for Tissue Engineering Applications. Nanofiber Research – Reaching New Heights. doi:10.5772/64177

    (http://dx.doi.org/10.5772/64177)

  255. 255
    Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration

    Öztatlı, H., & Ege, D. (2016). Physical and Chemical Properties of Poly (l-lactic acid)/Graphene Oxide Nanofibers for Nerve Regeneration. MRS Advances, 2(24), 1291–1296. doi:10.1557/adv.2016.663

    (https://doi.org/10.1557/adv.2016.663)

  256. 256
    Drug Delivery and Development of Anti-HIV Microbicides

    das Neves, J. (Ed.), Sarmento, B. (Ed.). (2015). Drug Delivery and Development of Anti-HIV Microbicides. New York: Jenny Stanford Publishing, https://doi.org/10.1201/b17559

    (https://doi.org/10.1201/b17559)

  257. 257
    Thin film composite membranes for forward osmosis supported by commercial nanofiber nonwovens

    Maqsud R. Chowdhury, Liwei Huang, and Jeffrey R. McCutcheon

    Industrial & Engineering Chemistry Research 2017 56 (4), 1057-1063

    DOI: 10.1021/acs.iecr.6b04256

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.6b04256)

  258. 258
    Dry-adhesives based on hierarchical poly (methyl methacrylate) electrospun fibers

    Sahay, R., Baji, A., Parveen, H., & Ranganath, A. S. (2017). Dry-adhesives based on hierarchical poly(methyl methacrylate) electrospun fibers. Applied Physics A, 123(3). doi:10.1007/s00339-017-0816-6

    (https://link.springer.com/article/10.1007/s00339-017-0816-6)

  259. 259
    Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality

    Cerkez I, Sezer A, Bhullar SK. 2017 Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality.R. Soc. open sci. 4: 160911. http://dx.doi.org/10.1098/rsos.160911

    (https://royalsocietypublishing.org/doi/full/10.1098/rsos.160911)

  260. 260
    Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production

    Yu, M., Dong, R.-H., Yan, X., Yu, G.-F., You, M.-H., Ning, X., & Long, Y.-Z. (2017). Recent Advances in Needleless Electrospinning of Ultrathin Fibers: From Academia to Industrial Production. Macromolecular Materials and Engineering, 302(7), 1700002. doi:10.1002/mame.201700002

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700002)

  261. 261
    Thermoresponsive electrospun membrane with enhanced wettability

    Ranganath, A. S., Ganesh, V. A., Sopiha, K., Sahay, R., & Baji, A. (2017). Thermoresponsive electrospun membrane with enhanced wettability. RSC Adv., 7(32), 19982–19989. doi:10.1039/c6ra27848e

    (https://pubs.rsc.org/en/content/articlehtml/2017/ra/c6ra27848e)

  262. 262
    Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application

    Thakur, N., Ranganath, A. S., Agarwal, K., & Baji, A. (2017). Electrospun Bead-On-String Hierarchical Fibers for Fog Harvesting Application. Macromolecular Materials and Engineering, 302(7), 1700124. doi:10.1002/mame.201700124

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700124)

  263. 263
    Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications

    Yilmaz, M., Erkartal, M., Ozdemir, M., Sen, U., Usta, H., & Demirel, G. (2017). Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications. ACS Applied Materials & Interfaces, 9(21), 18199–18206. doi:10.1021/acsami.7b03042

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  264. 264
    A high flux polyvinyl acetate-coated electrospun nylon 6/SiO2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance

    Islam, M. S., McCutcheon, J. R., & Rahaman, M. S. (2017). A high flux polyvinyl acetate-coated electrospun nylon 6/SiO 2 composite microfiltration membrane for the separation of oil-in-water emulsion with improved antifouling performance. Journal of Membrane Science, 537, 297–309. doi:10.1016/j.memsci.2017.05.019

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b03042)

  265. 265
    Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures

    Sahay, R., & Baji, A. (2017). Effect of pillar aspect ratio on shear adhesion strength of hierarchical electrospun fibrous structures. Journal of Materials Science, 52(17), 10592–10599. doi:10.1007/s10853-017-1191-6

    (https://link.springer.com/article/10.1007/s10853-017-1191-6)

  266. 266
    Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination

    Aksoy, O. E., Ates, B., & Cerkez, I. (2017). Antibacterial polyacrylonitrile nanofibers produced by alkaline hydrolysis and chlorination. Journal of Materials Science, 52(17), 10013–10022. doi:10.1007/s10853-017-1240-1

    (https://link.springer.com/article/10.1007/s10853-017-1240-1)

  267. 267
    Effects of pre-and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions

    Asadian, M., Grande, S., Morent, R., Nikiforov, A., Declercq, H., & De Geyter, N. (2017). Effects of pre- and post-electrospinning plasma treatments on electrospun PCL nanofibers to improve cell interactions. Journal of Physics: Conference Series, 841, 012018. doi:10.1088/1742-6596/841/1/012018

    (https://iopscience.iop.org/article/10.1088/1742-6596/841/1/012018/meta)

  268. 268
    Filtration of juices by using electrospun pan membrane

    ALTAY FİLİZ,AZIZZADEH FARZANEH, The Fifth International Symposium Frontiers in Polymer Science (POLY 2017), Seville/İSPANYA, 17 Mayıs 2017

    (https://akademi.itu.edu.tr/search-results?st=PAN%20polymer)

  269. 269
    Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials

    Livshits, M. (2017). Fundamental Investigation of PhotoActive Materials From Small Molecules to Materials. (Electronic Thesis or Dissertation). Retrieved from https://etd.ohiolink.edu/

    (https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ohiou1490713190973503)

  270. 270
    Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility

    KARAMAN, M., GÜRSOY, M., AYKÜL, F., TOSUN, Z., KARS, M. D., & YILDIZ, H. B. (2017). Hydrophobic coating of surfaces by plasma polymerization in an RF plasma reactor with an outer planar electrode: synthesis, characterization and biocompatibility. Plasma Science and Technology, 19(8), 085503. doi:10.1088/2058-6272/aa6fec

    (https://iopscience.iop.org/article/10.1088/2058-6272/aa6fec/meta)

  271. 271
    Mechanical properties and fatigue analysis on poly(ε- caprolactone)-polydopamine-coated nanofibers and poly(ε- caprolactone)-carbon nanotube composite scaffolds

    Fernández, J., Auzmendi, O., Amestoy, H., Diez-Torre, A., & Sarasua, J.-R. (2017). Mechanical properties and fatigue analysis on poly(ε-caprolactone)-polydopamine-coated nanofibers and poly(ε-caprolactone)-carbon nanotube composite scaffolds. European Polymer Journal, 94, 208–221. doi:10.1016/j.eurpolymj.2017.07.013

    (https://www.sciencedirect.com/science/article/pii/S0014305717302999)

  272. 272
    Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing

    Tort, S., Acartürk, F., & Beşikci, A. (2017). Evaluation of three-layered doxycycline-collagen loaded nanofiber wound dressing. International Journal of Pharmaceutics, 529(1-2), 642–653. doi:10.1016/j.ijpharm.2017.07.027

    (https://www.sciencedirect.com/science/article/pii/S0378517317306269)

  273. 273
    Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells

    Wanjare, M., Hou, L., Nakayama, K. H., Kim, J. J., Mezak, N. P., Abilez, O. J., … Huang, N. F. (2017). Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomaterials Science, 5(8), 1567–1578. doi:10.1039/c7bm00323d

    (https://pubs.rsc.org/en/content/articlelanding/2017/bm/c7bm00323d/unauth#!divAbstract)

  274. 274
    Thermoresponsive Cellulose Acetate−Poly(N‐isopropylacrylamide) Core−Shell Fibers for Controlled Capture and Release of Moisture

    Thakur, N., Sargur Ranganath, A., Sopiha, K., & Baji, A. (2017). Thermoresponsive Cellulose Acetate–Poly(N-isopropylacrylamide) Core–Shell Fibers for Controlled Capture and Release of Moisture. ACS Applied Materials & Interfaces, 9(34), 29224–29233. doi:10.1021/acsami.7b07559

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b07559 )

  275. 275
    Microfibrous scaffolds enhance endothelial differentiation and organization of induced pluripotent stem cells

    Kim, J. J., Hou, L., Yang, G., Mezak, N. P., Wanjare, M., Joubert, L. M., & Huang, N. F. (2017). Microfibrous Scaffolds Enhance Endothelial Differentiation and Organization of Induced Pluripotent Stem Cells. Cellular and Molecular Bioengineering, 10(5), 417–432. doi:10.1007/s12195-017-0502-y

    (https://link.springer.com/article/10.1007/s12195-017-0502-y)

  276. 276
    Atmospheric pressure plasma jet treatment of poly-ε-caprolactone polymer solutions to improve electrospinning

    Grande, S., Van Guyse, J., Nikiforov, A. Y., Onyshchenko, I., Asadian, M., Morent, R., … De Geyter, N. (2017). Atmospheric Pressure Plasma Jet Treatment of Poly-ε-caprolactone Polymer Solutions To Improve Electrospinning. ACS Applied Materials & Interfaces, 9(38), 33080–33090. doi:10.1021/acsami.7b08439

    (https://pubs.acs.org/doi/abs/10.1021/acsami.7b08439)

  277. 277
    Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering

    Ramphul, H., Bhaw-Luximon, A., & Jhurry, D. (2017). Sugar-cane bagasse derived cellulose enhances performance of polylactide and polydioxanone electrospun scaffold for tissue engineering. Carbohydrate Polymers, 178, 238–250. doi:10.1016/j.carbpol.2017.09.046

    (https://www.sciencedirect.com/science/article/pii/S0144861717310718)

  278. 278
    Thermoresponsive electrospun fibers for water harvesting applications

    Thakur, N., Baji, A., & Ranganath, A. S. (2018). Thermoresponsive electrospun fibers for water harvesting applications. Applied Surface Science, 433, 1018–1024. doi:10.1016/j.apsusc.2017.10.113

    (https://www.sciencedirect.com/science/article/pii/S0169433217330593)

  279. 279
    Effects of a Dielectric Barrier Discharge (DBD) Treatment on Chitosan/Polyethylene Oxide Nanofibers and Their Cellular Interactions

    Asadian, M., Onyshchenko, I., Thukkaram, M., Esbah Tabaei, P. S., Van Guyse, J., Cools, P., … De Geyter, N. (2018). Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. Carbohydrate Polymers. doi:10.1016/j.carbpol.2018.08.092

    (https://www.sciencedirect.com/science/article/pii/S0144861718310002)

  280. 280
    Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds

    Asadian, M., Declercq, H., Cornelissen, M., Morent, R., & De Geyter, N. (2017). Effects of plasma treatment on the surface chemistry, wettability, and cellular interactions of nanofibrous Scaffolds. In 31st International conference on surface modification technologies. (https://biblio.ugent.be/publication/8532609/file/8532610)

  281. 281
    Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications

    Senthamizhan, A., Balusamy, B., & Uyar, T. (2017). Electrospinning: A versatile processing technology for producing nanofibrous materials for biomedical and tissue-engineering applications. In Electrospun Materials for Tissue Engineering and Biomedical Applications (pp. 3-41). Woodhead Publishing.

    (https://doi.org/10.1016/B978-0-08-101022-8.00001-6)

  282. 282
    Solution electrospinning of nanofibers

    Salas, C. (2017). Solution electrospinning of nanofibers. In Electrospun Nanofibers (pp. 73-108). Woodhead Publishing.

    (http://dx.doi.org/10.1016/B978-0-08-100907-9.00004-0)

  283. 283
    Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación

    CHÓLIZ SANZ, SOFÍA. (2017). Microesferas magnéticas de polifluoruro de vinilideno para estimulación celular in vitro. Determinación y control de los parámetros del proceso de fabricación.

    (https://riunet.upv.es/handle/10251/89154)

  284. 284
    Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine

    Kiliç, E., Yakar, A., & Bayramgil, N. P. (2018). Preparation of electrospun polyurethane nanofiber mats for the release of doxorubicine. Journal of Materials Science: Materials in Medicine, 29(1), 8.

    (https://link.springer.com/article/10.1007/s10856-017-6013-5)

  285. 285
    Production and characterization of electrospun fish sarcoplasmic protein based nanofibers

    Sahin, Y. M., Su, S., Ozbek, B., Yücel, S., Pinar, O., Kazan, D., … & Gunduz, O. (2018). Production and characterization of electrospun fish sarcoplasmic protein based nanofibers. Journal of food engineering, 222, 54-62.

    (https://doi.org/10.1016/j.jfoodeng.2017.11.013)

  286. 286
    Production of the novel fibrous structure of poly(ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering

    Ozbek, B., Erdogan, B., Ekren, N., Oktar, F. N., Akyol, S., Ben-Nissan, B., … & Ozen, G. (2018). Production of the novel fibrous structure of poly (ε-caprolactone)/tri-calcium phosphate/hexagonal boron nitride composites for bone tissue engineering. Journal of the Australian Ceramic Society, 54(2), 251-260.

    (https://link.springer.com/article/10.1007/s41779-017-0149-0)

  287. 287
    Raising Nanofiber Output- The Progress, Mechanisms, Challenges, and Reasons for the Pursuit

    Akampumuza, O., Gao, H., Zhang, H., Wu, D., & Qin, X. H. (2018). Raising nanofiber output: the progress, mechanisms, challenges, and reasons for the pursuit. Macromolecular Materials and Engineering, 303(1), 1700269. (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201700269)

  288. 288
    Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation

    Ranganath, A. S., & Baji, A. (2018). Electrospun Janus Membrane for Efficient and Switchable Oil–Water Separation. Macromolecular Materials and Engineering, 303(11), 1800272.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mame.201800272)

  289. 289
    Anti-corrosion coating for magnesium alloys- electrospun superhydrophobic polystyrene/SiO2 composite fibers

    Polat, N. H., Kap, Ö., & Farzaneh, A. (2018). Anticorrosion coating for magnesium alloys: electrospun superhydrophobic polystyrene/SiO $ _ {2} $ composite fibers. Turkish Journal of Chemistry, 42(3), 672-683.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45567/572684)

  290. 290
    A comparative study of electrospinning process for two different collectors- The effect of the collecting method on the nanofiber diameters

    ÇAVDAR, F. Y., & UĞUZ, A. (2019). A comparative study of electrospinning process for two different collectors: The effect of the collecting method on the nanofiber diameters. Mechanical Engineering Journal, 6(1), 18-00298.

    (https://www.jstage.jst.go.jp/article/mej/6/1/6_18-00298/_article/-char/ja/)

  291. 291
    A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior

    Kabay, G., Demirci, C., Can, G. K., Meydan, A. E., Daşan, B. G., & Mutlu, M. (2018). A comparative study of single-needle and coaxial electrospun amyloid-like protein nanofibers to investigate hydrophilic drug release behavior. International journal of biological macromolecules, 114, 989-997.

    (https://www.sciencedirect.com/science/article/pii/S0141813018301107)

  292. 292
    A review of low density porous materials used in laser plasma experiments

    Nagai, K., Musgrave, C. S., & Nazarov, W. (2018). A review of low density porous materials used in laser plasma experiments. Physics of Plasmas, 25(3), 030501.

    (https://aip.scitation.org/doi/full/10.1063/1.5009689)

  293. 293
    Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption

    Buck, E., Maisuria, V., Tufenkji, N., & Cerruti, M. (2018). Antibacterial Properties of PLGA Electrospun Scaffolds Containing Ciprofloxacin Incorporated by Blending or Physisorption. ACS Applied Bio Materials, 1(3), 627-635.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00112)

  294. 294
    Bioactive glass/hydroxyapatite- containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering

    Deliormanlı, A. M., & Konyalı, R. (2019). Bioactive glass/hydroxyapatite-containing electrospun poly (ε-Caprolactone) composite nanofibers for bone tissue engineering. Journal of the Australian Ceramic Society, 55(1), 247-256.

    (https://link.springer.com/article/10.1007/s41779-018-0229-9)

  295. 295
    Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes

    Fu, X., Wang, Y., Fan, X., Scudiero, L., & Zhong, W. H. (2018). Core–Shell Hybrid Nanowires with Protein Enabling Fast Ion Conduction for High‐Performance Composite Polymer Electrolytes. Small, 14(49), 1803564.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/smll.201803564)

  296. 296
    Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines

    Kim, S., Traore, Y. L., Ho, E. A., Shafiq, M., Kim, S. H., & Liu, S. (2018). Design and development of pH-responsive polyurethane membranes for intravaginal release of nanomedicines. Acta biomaterialia, 82, 12-23.

    (https://www.sciencedirect.com/science/article/pii/S1742706118305932)

  297. 297
    Development and characterization of methylprednisolone loaded delayed release nanofibers

    Turanlı, Y., Tort, S., & Acartürk, F. (2019). Development and characterization of methylprednisolone loaded delayed release nanofibers. Journal of Drug Delivery Science and Technology, 49, 58-65.

    (https://www.sciencedirect.com/science/article/pii/S1773224718307780)

  298. 298
    Development of Carbon Nanofiber Yarns by Electrospinning

    Demir, A., Acikabak, B., & Ahan, Z. (2018, December). Development of Carbon Nanofiber Yarns by Electrospinning. In IOP Conference Series: Materials Science and Engineering (Vol. 460, No. 1, p. 012027). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/460/1/012027/meta)

  299. 299
    Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning

    Storti, E., Jankovský, O., Colombo, P., & Aneziris, C. G. (2018). Effect of heat treatment conditions on magnesium borate fibers prepared via electrospinning. Journal of the European Ceramic Society, 38(11), 4109-4117.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221918302632)

  300. 300
    Effect of polyvinyl alcohol (PVA)/chitosan (CS) blend ratios on morphological, optical and thermal properties of electrospun nanofibers

    AÇIK, G., Kamaci, M., ÖZATA, B., & CANSOY, C. E. Ö. (2019). Effect of polyvinyl alcohol/chitosan blend ratios on morphological, optical, and thermal properties of electrospun nanofibers. Turkish Journal of Chemistry, 43(1), 137-149.

    (https://dergipark.org.tr/tr/pub/tbtkchem/issue/45572/572771)

  301. 301
    Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer

    Kalkandelen, C., Ozbek, B., Ergul, N. M., Akyol, S., Moukbil, Y., Oktar, F. N., … & Gunduz, O. (2017, December). Effect of temperature, viscosity and surface tension on gelatine structures produced by modified 3D printer. In IOP Conference Series: Materials Science and Engineering (Vol. 293, No. 1, p. 012001). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/293/1/012001/meta)

  302. 302
    Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles

    Unal, S., Oktar, F. N., & Gunduz, O. (2018). Effects of Polymethylsilsesquioxane concentration on morphology shape of electrosprayed particles. Materials Letters, 221, 107-110.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18304786)

  303. 303
    Electrospinning for membrane fabrication- Strategies and applications

    Tijing, L. D., Woo, Y. C., Yao, M., Ren, J., & Shon, H. K. (2017). 1.16 Electrospinning for Membrane Fabrication: Strategies and Applications. Comprehensive Membrane Science and Engineering, 418–444. doi:10.1016/b978-0-12-409547-2.12262-0

    (https://www.researchgate.net/publication/313668516_Electrospinning_for_Membrane_Fabrication_Strategies_and_Applications)

  304. 304
    Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds

    Shin, J., Lee, E. J., & Ahn, D. U. (2018). Electrospinning of tri-acetyl-β-cyclodextrin (TA-β-CD) functionalized low-density polyethylene to minimize sulfur odor volatile compounds. Food Packaging and Shelf Life, 18, 107-114.

    (https://www.sciencedirect.com/science/article/abs/pii/S2214289418302448)

  305. 305
    Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives

    Demirkurt, M., Olcer, Y. A., Demir, M. M., & Eroglu, A. E. (2018). Electrospun polystyrene fibers knitted around imprinted acrylate microspheres as sorbent for paraben derivatives. Analytica chimica acta, 1014, 1-9.

    (https://www.sciencedirect.com/science/article/pii/S0003267018302058)

  306. 306
    Encapsulation of indocyanine green in poly(lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics

    Ege, Z. R., Akan, A., Oktar, F. N., Lin, C. C., Karademir, B., & Gunduz, O. (2018). Encapsulation of indocyanine green in poly (lactic acid) nanofibers for using as a nanoprobe in biomedical diagnostics. Materials Letters, 228, 148-151.

    (https://www.sciencedirect.com/science/article/abs/pii/S0167577X18309133)

  307. 307
    Fabrication of electrospun poly(ethylene terephthalate) scaffolds: Characterization and their potential on cell proliferation in vitro

    DÜZYER, Ş. (2017). FABRICATION OF ELECTROSPUN POLY (ETHYLENE TEREPHTHALATE) SCAFFOLDS: CHARACTERIZATION AND THEIR POTENTIAL ON CELL PROLIFERATION IN VITRO. TEKSTİL VE KONFEKSİYON, 27(4), 334-341.

    (https://dergipark.org.tr/tr/pub/tekstilvekonfeksiyon/issue/33462/372022)

  308. 308
    Fabrication of Antibacterial Polyvinylalcohol Nanocomposite Mats with Soluble Starch Coated Silver Nanoparticles

    Aktürk, A., Taygun, M. E., Güler, F. K., Goller, G., & Küçükbayrak, S. (2019). Fabrication of antibacterial polyvinylalcohol nanocomposite mats with soluble starch coated silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 255-262.

    (https://www.sciencedirect.com/science/article/abs/pii/S0927775718310252)

  309. 309
    Fabrication of PEOT/PBT Nanofibers by Atmospheric Pressure Plasma Jet Treatment of Electrospinning Solutions for Tissue Engineering

    Grande, S., Cools, P., Asadian, M., Van Guyse, J., Onyshchenko, I., Declercq, H., … & De Geyter, N. (2018). Fabrication of PEOT/PBT nanofibers by atmospheric pressure plasma jet treatment of electrospinning solutions for tissue engineering. Macromolecular Bioscience, 18(12), 1800309.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/mabi.201800309)

  310. 310
    Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly(vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation

    Chen, T., Soroush, A., & Rahaman, M. S. (2018). Highly Hydrophobic Electrospun Reduced Graphene Oxide/Poly (vinylidene fluoride-co-hexafluoropropylene) Membranes for Use in Membrane Distillation. Industrial & Engineering Chemistry Research, 57(43), 14535-14543.

    (https://pubs.acs.org/doi/abs/10.1021/acs.iecr.8b03584)

  311. 311
    Interfacial Polymerization with Electrosprayed Microdroplets- Toward Controllable and Ultrathin Polyamide Membranes

    Ma, X. H., Yang, Z., Yao, Z. K., Guo, H., Xu, Z. L., & Tang, C. Y. (2018). Interfacial polymerization with electrosprayed microdroplets: Toward controllable and ultrathin polyamide membranes. Environmental Science & Technology Letters, 5(2), 117-122.

    (https://pubs.acs.org/doi/abs/10.1021/acs.estlett.7b00566)

  312. 312
    Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers

    Rezaei, F., Gorbanev, Y., Chys, M., Nikiforov, A., Van Hulle, S. W., Cos, P., … & De Geyter, N. (2018). Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Processes and Polymers, 15(6), 1700226.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/ppap.201700226)

  313. 313
    Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications

    Avsar, G., Agirbasli, D., Agirbasli, M. A., Gunduz, O., & Oner, E. T. (2018). Levan based fibrous scaffolds electrospun via co-axial and single-needle techniques for tissue engineering applications. Carbohydrate polymers, 193, 316-325.

    (https://www.sciencedirect.com/science/article/pii/S0144861718303382)

  314. 314
    Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection

    Ghannadian, P., Moxley Jr, J. W., Machado de Paula, M. M., Lobo, A. O., & Webster, T. J. (2018). Micro-Nanofibrillar Polycaprolactone Scaffolds as Translatable Osteoconductive Grafts for the Treatment of Musculoskeletal Defects without Infection. ACS Applied Bio Materials, 1(5), 1566-1578.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00453)

  315. 315
    Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma- alignment, antibacterial activity, and biocompatibility

    Arik, N., Inan, A., Ibis, F., Demirci, E. A., Karaman, O., Ercan, U. K., & Horzum, N. (2019). Modification of electrospun PVA/PAA scaffolds by cold atmospheric plasma: alignment, antibacterial activity, and biocompatibility. Polymer Bulletin, 76(2), 797-812.

    (https://link.springer.com/article/10.1007/s00289-018-2409-8)

  316. 316
    Morphological and Mechanical Characterization of Electrospun Polylactic Acid and Microcrystalline Cellulose

    Gaitán, A., & Gacitúa, W. (2018). Morphological and mechanical characterization of electrospun polylactic acid and microcrystalline cellulose. BioResources, 13(2), 3659-3673.

    (https://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_13_2_3659_Gaitan_Morphological_Mechanical_Electrospun_Cellulose)

  317. 317
    Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis

    Jedrusik, N., Meyen, C., Finkenzeller, G., Stark, G. B., Meskath, S., Schulz, S. D., … & Tomakidi, P. (2018). Nanofibered Gelatin‐Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced healthcare materials, 7(10), 1700895.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/adhm.201700895)

  318. 318
    PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning

    Rogalski, J., Bastiaansen, C., & Peijs, T. (2018). PA6 nanofibre production: A comparison between rotary jet spinning and electrospinning. Fibers, 6(2), 37.

    (https://www.mdpi.com/2079-6439/6/2/37)

  319. 319
    Patent - US20180142379A1 - Electrospinning of fluoropolymers

    Poss, A. J., Nalewajek, D., Cantlon, C. L., Lu, C., & Wo, S. (2018). U.S. Patent Application No. 15/802,673.

    (https://patents.google.com/patent/US20180142379A1/en)

  320. 320
    Patent - US20180215882A1 - Swellable and insoluble nanofibers and use thereof in the treatment of essentially aqueous effluents

    Viel, P., Benzaqui, M., & Shilova, E. (2018). U.S. Patent Application No. 15/750,044.

    (https://patents.google.com/patent/US20180215882A1/en)

  321. 321
    Patent - US20180301690A1 - Metal oxide nanofiber electrode and method

    Ozkan, C. S., Ozkan, M., Bell, J., & Ye, R. (2018). U.S. Patent Application No. 15/776,720. (https://patents.google.com/patent/US20180301690A1/en)

  322. 322
    Plasma Modification of Poly Lactic Acid Solutions to Generate High Quality Electrospun PLA Nanofibers

    Rezaei, F., Nikiforov, A., Morent, R., & De Geyter, N. (2018). Plasma modification of poly lactic acid solutions to generate high quality electrospun PLA nanofibers. Scientific reports, 8(1), 2241.

    (https://www.nature.com/articles/s41598-018-20714-5)

  323. 323
    Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkol'ün fotokatalitik bozunması

    Köysüren, H. N., & Köysüren, Ö. (2018). Polivinil alkol kompozit nanoliflerin hazırlanması ve katı-faz polivinil alkolün fotokatalitik bozunması. Journal of the Faculty of Engineering & Architecture of Gazi University, 33(4).

    (https://dergipark.org.tr/tr/download/article-file/601784)

  324. 324
    Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst

    Figen, A. K., & Filiz, B. C. (2019). Polymeric and metal oxide structured nanofibrous composites fabricated by electrospinning as highly efficient hydrogen evolution catalyst. Journal of colloid and interface science, 533, 82-94.

    (https://www.sciencedirect.com/science/article/pii/S0021979718309639)

  325. 325
    Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats

    Konyalı, R., & Deliormanlı, A. M. (2019). Preparation and mineralization of 13-93 bioactive glass-containing electrospun poly-epsilon-caprolactone composite nanofibrous mats. Journal of Thermoplastic Composite Materials, 32(5), 690-709.

    (https://journals.sagepub.com/doi/abs/10.1177/0892705718772889)

  326. 326
    Salinomycin-loaded Nanofibers for Glioblastoma Therapy

    Norouzi, M., Abdali, Z., Liu, S., & Miller, D. W. (2018). Salinomycin-loaded Nanofibers for Glioblastoma Therapy. Scientific reports, 8(1), 9377.

    (https://www.nature.com/articles/s41598-018-27733-2)

  327. 327
    Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu

    ALMA, M. H., YAZICI, M., YILDIRIM, B., & TİYEK, İ. (2017). Spunbond Dokusuz Tekstil Yüzeyi Üzerine Elektro Çekim Yöntemi ile Nano Boyutta Grafen Kaplanması ve Karakterizasyonu. Tekstil ve Mühendis, 24(108), 243-253.

    (https://dergipark.org.tr/tr/pub/teksmuh/issue/33861/374969)

  328. 328
    Superhydrophobic EVA copolymer fibers- the impact of chemical composition on wettability and photophysical properties

    Acik, G., Kamaci, M., & Cansoy, C. E. (2018). Superhydrophobic EVA copolymer fibers: the impact of chemical composition on wettability and photophysical properties. Colloid and Polymer Science, 296(11), 1759-1766.

    (https://link.springer.com/article/10.1007/s00396-018-4395-7)

  329. 329
    The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P(AN-VAc) nanofiber mats/PP spunbond

    Tiyek, İ., Yazıcı, M., Alma, M. H., & Karataş, Ş. (2019). The investigation of the electromagnetic shielding effectiveness of multi-layered nanocomposite materials from reduced graphene oxide-doped P (AN-VAc) nanofiber mats/PP spunbond. Journal of Composite Materials, 53(11), 1541-1553.

    (https://journals.sagepub.com/doi/abs/10.1177/0021998318806973)

  330. 330
    The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility

    Isik, B. S., Altay, F., & Capanoglu, E. (2018). The uniaxial and coaxial encapsulations of sour cherry (Prunus cerasus L.) concentrate by electrospinning and their in vitro bioaccessibility. Food chemistry, 265, 260-273.

    (https://www.sciencedirect.com/science/article/pii/S0308814618308719)

  331. 331
    Thermal Conductivity of Electrospun Polyethylene Nanofibers

    Ma, J., Zhang, Q., Mayo, A., Ni, Z., Yi, H., Chen, Y., … & Li, D. (2015). Thermal conductivity of electrospun polyethylene nanofibers. Nanoscale, 7(40), 16899-16908.

    (https://pubs.rsc.org/en/content/articlelanding/2015/nr/c5nr04995d/unauth#!divAbstract)

  332. 332
    Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application

    Li, W. (2018). Bacteria-triggered release of a potent biocide from core-shell polyhydroxyalkanoate (PHA)-based nanofibers for wound dressing application.

    (https://mspace.lib.umanitoba.ca/handle/1993/33473)

  333. 333
    Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem

    Růžek, V. (2018). Studium kinetiky funkcionalizace povrchu nanovláken po aktivaci plazmatem.

    (https://dspace.tul.cz/handle/15240/32257)

  334. 334
    Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules

    Maıhemutı, A. (2018). Using Of Nanofiber Based Electrodes For Detection Of Organic Molecules (Master’s thesis, Fen Bilimleri Enstitüsü).

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/4603)

  335. 335
    Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters

    Ghobeira, R., Asadian, M., Vercruysse, C., Declercq, H., De Geyter, N., & Morent, R. (2018). Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. Polymer, 157, 19-31.

    (https://www.sciencedirect.com/science/article/pii/S0032386118309455)

  336. 336
    A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions

    Asadian, M., Grande, S., Onyshchenko, I., Morent, R., Declercq, H., & De Geyter, N. (2019). A comparative study on pre-and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. Applied Surface Science, 481, 1554-1565.

    (https://www.sciencedirect.com/science/article/pii/S0169433219308554)

  337. 337
    Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly(ethylene succinate) for On-Demand Release of Biocides

    Abdali, Z., Logsetty, S., & Liu, S. (2019). Bacteria-Responsive Single and Core–Shell Nanofibrous Membranes Based on Polycaprolactone/Poly (ethylene succinate) for On-Demand Release of Biocides. ACS Omega, 4(2), 4063-4070.

    (https://pubs.acs.org/doi/abs/10.1021/acsomega.8b03137)

  338. 338
    Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes

    Chan, K. V., Asadian, M., Onyshchenko, I., Declercq, H., Morent, R., & De Geyter, N. (2019). Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (ε-caprolactone) Nanofiber Meshes. Nanomaterials, 9(9), 1215.

    (https://www.mdpi.com/2079-4991/9/9/1215)

  339. 339
    Bioinspired scaffold induced regeneration of neural tissue

    Altun, E., Aydogdu, M. O., Togay, S. O., Sengil, A. Z., Ekren, N., Haskoylu, M. E., … & Ahmed, J. (2019). Bioinspired scaffold induced regeneration of neural tissue. European Polymer Journal, 114, 98-108.

    (https://www.sciencedirect.com/science/article/pii/S0014305718324765)

  340. 340
    Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture

    Türker, E., Yildiz, Ü. H., & Yildiz, A. A. (2019). Biomimetic hybrid scaffold consisting of co-electrospun collagen and PLLCL for 3D cell culture. International journal of biological macromolecules.

    (https://www.sciencedirect.com/science/article/pii/S0141813019350019)

  341. 341
    Development of TiO2 nanofibers based semiconducting humidity sensor- adsorption kinetics and DFT computations

    Farzaneh, A., Esrafili, M. D., & Mermer, Ö. (2019). Development of TiO2 nanofibers based semiconducting humidity sensor: adsorption kinetics and DFT computations. Materials Chemistry and Physics, 121981.

    (https://www.sciencedirect.com/science/article/pii/S0254058419307801)

  342. 342
    Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering

    Dalgic, A. D., Atila, D., Karatas, A., Tezcaner, A., & Keskin, D. (2019). Diatom shell incorporated PHBV/PCL-pullulan co-electrospun scaffold for bone tissue engineering. Materials Science and Engineering: C, 100, 735-746.

    (https://www.sciencedirect.com/science/article/pii/S0928493118326286)

  343. 343
    Dual effective core-shell electrospun scaffolds- Promoting osteoblast maturation and reducing bacteria activity

    De-Paula, M. M. M., Afewerki, S., Viana, B. C., Webster, T. J., Lobo, A. O., & Marciano, F. R. (2019). Dual effective core-shell electrospun scaffolds: Promoting osteoblast maturation and reducing bacteria activity. Materials Science and Engineering: C, 103, 109778.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309032)

  344. 344
    Effects of UV Exposure Time on Nanofiber Wound Dressing Properties During Sterilization

    Tort, S., Demiröz, F. T., Yıldız, S., & Acartürk, F. (2019). Effects of UV exposure time on nanofiber wound dressing properties during sterilization. Journal of Pharmaceutical Innovation, 1-8.

    (https://link.springer.com/article/10.1007/s12247-019-09383-7)

  345. 345
    Electron Microscopy Investigation of CeO2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation

    Liu, Z., Lu, Y., Li, J., Wang, Y., Wujcik, E. K., & Wang, R. (2019). Electron Microscopy Investigation of CeO 2 Nanofibers Supported Noble Metal (Pt, Pd and Ru) Catalysts for CO Oxidation. Microscopy and Microanalysis, 25(S2), 2176-2177.

    (https://doi.org/10.1017/S1431927619011619)

  346. 346
    Electrospinning and Electrospun Nanofibers- Methods, Materials, and Applications

    Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews, 119(8), 5298-5415.

    (https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.8b00593)

  347. 347
    Electrospinning- The Setup and Procedure

    Long, Y. Z., Yan, X., Wang, X. X., Zhang, J., & Yu, M. (2019). Electrospinning: The Setup and Procedure. In Electrospinning: Nanofabrication and Applications (pp. 21-52). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000029)

  348. 348
    Electrospray Deposition of Discrete Nanoparticles- Studies on Pulsed-Field Electrospray and Analytical Applications

    Kremer, M. H. (2019). Electrospray Deposition of Discrete Nanoparticles: Studies on Pulsed-Field Electrospray and Analytical Applications.

    (https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/9p290g61r)

  349. 349
    Electrospun Fibers of Polyester, with Both Nano- and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds

    Fernández, J., Ruiz-Ruiz, M., & Sarasua, J. R. (2019). Electrospun Fibers of Polyester, with Both Nano-and Micron Diameters, Loaded with Antioxidant for Application as Wound Dressing or Tissue Engineered Scaffolds. ACS Applied Polymer Materials.

    (https://pubs.acs.org/doi/abs/10.1021/acsapm.9b00108)

  350. 350
    Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material

    Gurler, E. B., Ergul, N. M., Ozbek, B., Ekren, N., Oktar, F. N., Haskoylu, M. E., … & Temiz, A. F. (2019). Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Materials Science and Engineering: C, 100, 798-808.

    (https://www.sciencedirect.com/science/article/pii/S0928493118329187)

  351. 351
    Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4 /MWCNT ceramic composite

    Zagyva, T., Balázsi, K., & Balázsi, C. (2019). Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite. PROCESSING AND APPLICATION OF CERAMICS, 13(2), 132-138.

    (http://www.doiserbia.nb.rs/Article.aspx?ID=1820-61311902132Z#.XXKXgJMzbfY)

  352. 352
    Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning

    Valtera, J., Kalous, T., Pokorny, P., Batka, O., Bilek, M., Chvojka, J., … & Beran, J. (2019). Fabrication of dual-functional composite yarns with a nanofibrous envelope using high throughput AC needleless and collectorless electrospinning. Scientific reports, 9(1), 1801. (https://www.nature.com/articles/s41598-019-38557-z)

  353. 353
    Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries

    Kalybekkyzy, S., Mentbayeva, A., Kahraman, M. V., Zhang, Y., & Bakenov, Z. (2019). Flexible S/DPAN/KB Nanofiber Composite as Binder-Free Cathodes for Li-S Batteries. Journal of The Electrochemical Society, 166(3), A5396-A5402. (http://jes.ecsdl.org/content/166/3/A5396.short)

  354. 354
    Hydrogen production from sodium borohydride originated compounds- Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity

    Filiz, B. C., & Figen, A. K. (2019). Hydrogen production from sodium borohydride originated compounds: Fabrication of electrospun nano-crystalline Co3O4 catalyst and its activity. International Journal of Hydrogen Energy, 44(20), 9883-9895. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919306974)

  355. 355
    Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production

    Figen, A. K. (2019). Improved catalytic performance of metal oxide catalysts fabricated with electrospinning in ammonia borane methanolysis for hydrogen production. International Journal of Hydrogen Energy. (https://www.sciencedirect.com/science/article/abs/pii/S0360319919305610)

  356. 356
    Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration

    Goonoo, N., Fahmi, A., Jonas, U., Gimié, F., Arsa, I. A., Bénard, S., … & Bhaw-Luximon, A. (2019). Improved Multicellular Response, Biomimetic Mineralization, Angiogenesis, and Reduced Foreign Body Response of Modified Polydioxanone Scaffolds for Skeletal Tissue Regeneration. ACS applied materials & interfaces, 11(6), 5834-5850. (https://pubs.acs.org/doi/abs/10.1021/acsami.8b19929)

  357. 357
    Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification

    Gürsoy, M., Özcan, F., & Karaman, M. (2019). Improvement of carbon nanotube dispersion in electrospun polyacrylonitrile fiber through plasma surface modification. Journal of Applied Polymer Science, 136(31), 47768.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.47768)

  358. 358
    Kinetics and Isotherms Studies of the Adsorption of Hg(II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane

    Somera, L. R., Cuazon, R., Cruz, J. K., & Diaz, L. J. (2019, May). Kinetics and Isotherms Studies of the Adsorption of Hg (II) onto Iron Modified Montmorillonite/Polycaprolactone Nanofiber Membrane. In IOP Conference Series: Materials Science and Engineering (Vol. 540, No. 1, p. 012005). IOP Publishing.

    (https://iopscience.iop.org/article/10.1088/1757-899X/540/1/012005/meta)

  359. 359
    Latest Progress in Electrospun Nanofibers for Wound Healing Applications

    Memic, A., Abudula, T., Mohammed, H. S., Joshi Navare, K., Colombani, T., & Bencherif, S. A. (2019). Latest progress in electrospun nanofibers for wound healing applications. ACS Applied Bio Materials, 2(3), 952-969.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.8b00637)

  360. 360
    Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection

    Singh, H., Li, W., Kazemian, M. R., Yang, R., Yang, C., Logsetty, S., & Liu, S. (2019). Lipase-Responsive Electrospun Theranostic Wound Dressing for Simultaneous Recognition and Treatment of Wound Infection. ACS Applied Bio Materials, 2(5), 2028-2036.

    (https://pubs.acs.org/doi/abs/10.1021/acsabm.9b00076)

  361. 361
    Needle-less Electrospinning

    Yan, G., Niu, H., & Lin, T. (2019). Needle-less Electrospinning. In Electrospinning: Nanofabrication and Applications (pp. 219-247). William Andrew Publishing.

    (https://www.sciencedirect.com/science/article/pii/B9780323512701000078)

  362. 362
    Novel biodegradable and non-fouling systems for controlled-release based on poly(ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings

    Sanchez-Rexach, E., Iturri, J., Fernandez, J., Meaurio, E., Toca-Herrera, J. L., & Sarasua, J. R. (2019). Novel biodegradable and non-fouling systems for controlled-release based on poly (ε-caprolactone)/Quercetin blends and biomimetic bacterial S-layer coatings. RSC Advances, 9(42), 24154-24163.

    (https://pubs.rsc.org/en/content/articlelanding/ra/2019/c9ra04398e#!divAbstract)

  363. 363
    On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats

    Bal, B., Tugluca, I. B., Koc, N., & Isoglu, I. A. (2019). On the detailed mechanical response investigation of PHBV/PCL and PHBV/PLGA electrospun mats. Materials Research Express, 6(6), 065411.

    (https://iopscience.iop.org/article/10.1088/2053-1591/ab0eaa/meta)

  364. 364
    Patent - US10197498B2 - Compositions and methods for measurement of analytes

    Ruckh, T. T., Balaconis, M. K., Clark, H. A., & Skipwith, C. (2019). U.S. Patent Application No. 10/197,498.

    (https://patents.google.com/patent/US10197498B2/en?oq=US10197498B2+)

  365. 365
    Patent - US10211449B2 - Battery electrode and method

    Ozkan, C. S., Ozkan, M., & Favors, Z. (2019). U.S. Patent Application No. 10/211,449. (https://patents.google.com/patent/US10211449B2/en)

  366. 366
    Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose

    Sezer, U. A., Sanko, V., Gulmez, M., Aru, B., Sayman, E., Aktekin, A., … & Sezer, S. (2019). Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Materials Science and Engineering: C, 99, 1141-1152.

    (https://www.sciencedirect.com/science/article/pii/S0928493118327024)

  367. 367
    Polypropylene microfibers via solution electrospinning under ambient conditions

    Acik, G., & Altinkok, C. (2019). Polypropylene microfibers via solution electrospinning under ambient conditions. Journal of Applied Polymer Science, 136(45), 48199.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48199)

  368. 368
    Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application

    Cesur, S., Oktar, F. N., Ekren, N., Kilic, O., Alkaya, D. B., Seyhan, S. A., … & Gunduz, O. (2019). Preparation and characterization of electrospun polylactic acid/sodium alginate/orange oyster shell composite nanofiber for biomedical application. Journal of the Australian Ceramic Society, 1-11.

    (https://link.springer.com/article/10.1007/s41779-019-00363-1)

  369. 369
    Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO

    Basar, A. O., Sadhu, V., & Sasmazel, H. T. (2019). Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Biomedical Materials, 14(4), 045012.

    (https://iopscience.iop.org/article/10.1088/1748-605X/ab2035/meta)

  370. 370
    Proses parametreleri ve çözelti özelliklerinin koaksiyal elektropüskürtme yönetemi ile elde edilen nanopartiküllerin morfolojik özellikleri üzerine etkisi

    Mete, A. A., & Atay, E. PROSES PARAMETRELERİ VE ÇÖZELTİ ÖZELLİKLERİNİN KOAKSİYAL ELEKTROPÜSKÜRTME YÖNTEMİ İLE ELDE EDİLEN NANOPARTİKÜLLERİN MORFOLOJİK ÖZELLİKLERİ ÜZERİNE ETKİSİ. GIDA, 44(3), 534-551.

    (https://dergipark.org.tr/tr/pub/gida/article/531149)

  371. 371
    Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends

    Akinalan Balik, B., & Argin, S. (2019). Role of rheology on the formation of Nanofibers from pectin and polyethylene oxide blends. Journal of Applied Polymer Science, 48294.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48294)

  372. 372
    Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior

    Ghobeira, R., Philips, C., Liefooghe, L., Verdonck, M., Asadian, M., Cools, P., … & Morent, R. (2019). Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. Applied Surface Science, 485, 204-221.

    (https://www.sciencedirect.com/science/article/pii/S0169433219311018)

  373. 373
    Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning

    Storti, E., Himcinschi, C., Kortus, J., & Aneziris, C. G. (2019). Synthesis and characterization of calcium zirconate nanofibers produced by electrospinning. Journal of the European Ceramic Society.

    (https://www.sciencedirect.com/science/article/abs/pii/S0955221919305485)

  374. 374
    Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability

    Işik, C., Arabaci, G., Doğaç, Y. I., Deveci, İ., & Teke, M. (2019). Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability. Materials Science and Engineering: C, 99, 1226-1235.

    (https://www.sciencedirect.com/science/article/pii/S0928493118309317)

  375. 375
    Synthesis and mechanical properties of para‐aramid nanofibers

    Trexler, M. M., Hoffman, C., Smith, D. A., Montalbano, T. J., Yeager, M. P., Trigg, D., … & Xia, Z. (2019). Synthesis and mechanical properties of para‐aramid nanofibers. Journal of Polymer Science Part B: Polymer Physics, 57(10), 563-573.

    (https://onlinelibrary.wiley.com/doi/abs/10.1002/polb.24810)

  376. 376
    Nerve guidance conduit application of magnesium alloys

    Özkan, O. (2019). NERVE GUIDANCE CONDUIT APPLICATION OF MAGNESIUM ALLOYS.

    (http://www.openaccess.hacettepe.edu.tr:8080/xmlui/handle/11655/6176)

  377. 377
    Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization- Physical, chemical and biological properties

    Asadian, M., Onyshchenko, I., Thiry, D., Cools, P., Declercq, H., Snyders, R., … & De Geyter, N. (2019). Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. Applied Surface Science, 479, 942-952.

    (https://www.sciencedirect.com/science/article/pii/S0169433219305203)

  378. 378
    Electrospun nanofibers for biomedical applications
  379. 379
    Lamination of Separators to Electrodes using Electrospinning

    Springer Bernhard Christian, Frankenberger Martin, Pettinger Karl-Heinz. PLoS One; San Francisco Vol. 15, Iss. 1, (Jan 2020): e0227903. DOI:10.1371/journal.pone.0227903

    https://search.proquest.com/openview/a108579a31b0ed99b86e3d8f49ae9148/1?pq-origsite=gscholar&cbl=1436336

  380. 380
    Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment

    Claudia Heuera, Enrico Stortia, Thomas Graule, Christos G.Aneziris.

    EMPA, Eidgenössische Materialprüfungs- und Forschungsanstalt, Laboratory for High Performance Ceramics, Überlandstr. 129, 8600, Dübendorf, Switzerland.

    https://www.sciencedirect.com/science/article/pii/S0272884220302601?via%3Dihub

  381. 381
    Measurement of impact characteristics in a string using electrospun PVDF nanofibers strain sensors

    Rahul KumarSingh, Sun WohLye, JianminMiao.

    School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore.

    https://www.sciencedirect.com/science/article/abs/pii/S0924424719317200?via%3Dihub

  382. 382
    Radicals and Ions Formed in Plasma-Treated Organic Solvents: A Mechanistic Investigation to Rationalize the Enhancement of Electrospinnability of Polycaprolactone

    Silvia Grande, Francesco Tampieri, Anton Nikiforov, Agata Giardina, Antonio Barbon, Pieter Cools, Rino Morent, Cristina Paradisi, Ester Marotta and Nathalie De Geyter.
    Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Ghent, Belgium/Department of Chemical Sciences, Università degli Studi di Padova, Padua, Italy.

    https://www.frontiersin.org/articles/10.3389/fchem.2019.00344/full

  383. 383
    Aging effect of atmospheric pressure plasma jet treated polycaprolactone polymer solutions on electrospinning properties

    Silvia Grande,Joachim Van Guyse,  Anton Y. Nikiforov,  Iuliia Onyshchenko,  Mahtab Asadian, Rino Morent, Richard Hoogenboom and Nathalie De Geyte.

    https://onlinelibrary.wiley.com/doi/abs/10.1002/app.48914

  384. 384
    Electrospinning of linezolid loaded PLGA nanofibers: effect of solvents on its spinnability, drug delivery, mechanical properties, and antibacterial activities

    Tugba Eren Boncu, Nurten Ozdemir and Aylin Uskudar Guclu.

    https://www.tandfonline.com/doi/full/10.1080/03639045.2019.1706550

  385. 385
    Halochromic composite nanofibrous mat for wound healing monitoring
    Ayben Pakolpakçıl, Bilgen Osman, Elif Tümay Özer, Yasemin Şahan, Behçet Becerir, Gökhan Göktalay and Esra Karaca
    2020 IOP Publishing Ltd
    Materials Research Express, Volume 6, Number 12
  386. 386
    Synthesis and morphology optimization of electrospun SiBNC nanofibers
    Kamal Asadi-Pakdel, Rouhollah Mehdinavaz Aghdama, Mehdi Shahedi Asl and Mohammad Ali Faghihi Sani.